A Collaborative BCI Trained to Aid Group Decisions in a Visual Search Task Works Well with Similar Tasks

Davide Valeriani, Caterina Cinel and Riccardo Poli

Brain-Computer Interfaces and Neural Engineering Laboratory School of Computer Science and Electronic Engineering University of Essex

NAT'17 – Berlin, 20th July 2017

Outline

- Background
- Contributions
- Experimental work
- Results
- Conclusions

Group Decision Making

- Augmented capabilities and perception
- Vital for **critical decisions** (e.g., defence, health and finance)
- Traditionally require **large groups**

Brain-Computer Interfaces (BCIs)

- Convert brain signals to commands
- Traditionally used by disabled
- Recently applied to human
 enhancement and neuroergonomics

BRAIN-COMPUTER INTERFACE

Collaborative BCIs (cBCIs)

Use data from **multiple brains** to improve BCI performance

Hybrid cBCIs for Group Decision Making

- Users report individual decisions (hybrid)
- Each BCI predicts the decision confidence, i.e., the probability of a decision to be correct
- Weighted majority to make group decisions

Decision Confidence Estimation

Stimulus-locked	Response-locked
epochs	epochs

Group Simulation

- Data recorded separately
- Participants combined offline in groups of increasing size
- Error rates computed across all possible groups of each size

Supervised Machine Learning BCI

Classic approach: one BCI per experiment

Experiments

Two similar **visual search** experiments:

- <u>Experiment 1</u>: finding a vertical red bar in a display of 40 coloured bars
- <u>Experiment 2</u>: finding a **polar bear** in a picture full of penguins

Similar Protocol

- 320 trials split in 8 blocks
- Stimulus shown for 250 ms
- 10 participants performing the two experiments in counterbalanced order

Are you ready to try Experiment 2?

Have you seen a polar bear?

Can you see it now?

Results – Experiment 1

Results – Experiment 2

Conclusions

- Hybrid cBCIs significantly improve group decisions over traditional non-BCI groups
- **Transfer learning** allows to reduce training times without major losses in performance
- The optimal solution is to have one BCI per experiment and even-sized groups
- Future work: use transfer learning in other domains, e.g., multisensory perception

Thank you!

This research was supported by the Defence Science and Technology Laboratory and by EPSRC as part of the MURI programme (grant EP/P009204/1).