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ABSTRACT
The development of Brain–Computer Interfaces (BCIs) requires specialists in various fields, includ-
ing engineering, computer science, medicine and neuroscience. Each of these disciplines pos-
sesses a specific and sometimes differing terminology, which creates obstacles to mutual 
understanding and research collaboration. The IEEE P2731 working group aims to improve com-
munication among BCI researchers by developing a functional model and standard glossary that 
can be used in all relevant fields. This article describes the anatomical regions of the brain and 
physiological processes commonly used by BCI applications. It serves as an introduction to 
neurophysiology for engineers and other non-specialists, and it offers background to articles on 
the IEEE P2731 Functional Model and Glossary available elsewhere in this special issue.
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1. Introduction

The goal of a Brain–Computer Interface (BCI) is to 
detect, interpret and apply signals generated by 
a human brain. Depending on the system configuration, 
these signals can be used for scientific inquiry, for self- 
awareness, or for ‘useful commands’ when linked to 
actuators, physical or virtual prostheses which are also 
known as effectors [1]. For the purposes of this paper, 
the brain is considered a functional component in an 
engineered system, namely a BCI. Thus, the role of 
cerebral activity in general physiology, namely main-
taining the human body, is beyond this paper’s scope. 
The brain contains a network of functional regions 
which communicate to maintain life, but a BCI relies 
on the brain’s response to a repertoire of stimuli, some 
of which are generated to control virtual or physical 
actuators. The stakes in mental engineering are high. 
BCI is often used as a scientific probe, but it also sup-
ports practical applications which may provoke pro-
found social change. BCIs support a large range of 
objectives, and their users include scientists exploring 
the nature of cognition, marketers trying to influence 
consumer decisions [2], computer game developers [3], 
and medical, industrial and military organizations aim-
ing to deploy thought-controlled machines in their 
respective domains

Indeed a living brain is essential to a BCI, but end- 
users of a well-designed system can treat the brain as 
a black box. A BCI operates on the principle that brains 

generate signals which can be detected through sensors 
attached to interpretive machinery. For nonscientific 
purposes, as long as equipment is properly used, what 
matters is the detectability and consistency of signals 
rather than the organism producing them.

This paper aims to introduce the physiological foun-
dations of BCIs to developers with non-medical back-
grounds. Its specific context is the BCI Functional 
Model developed by the IEEE P2731 working group to 
which the authors belong. We have already noted the 
diversity of disciplines contributing to BCI’s expansion. 
Our committee is developing a standard glossary for 
BCIs that can be beneficially adopted by all users. The 
Standard Glossary needs a common framework of refer-
ence, and the P2731 Functional Model, which is the 
subject of this special issue, provides that framework 
by segmenting BCI systems into a series of modules. 
Needless to say, the human brain does far more than 
participate in BCI applications, but the field could 
hardly progress without contributions from neurophy-
siology. This paper aims to introduce the elements of 
neurophysiology most relevant to BCI-based 
applications.

A key challenge in BCI research is to identify how, 
where and why the brain generates the signals recorded 
by sensors. Accurate models of perception, imagination 
and other mental operations improve the engineering of 
BCI systems by enabling transducers – the topic of 
a subsequent paper in this special issue – to more 
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accurately extract targeted neural activity from the vari-
ety of signals generated by the brain and surrounding 
tissues. Similar to psychology – discussed in ‘A 
Functional BCI Model by the P2731 working group: 
Psychology’ within this special issue – considerable 
ambiguity remains in neurophysiology, and many spe-
cifics of how the brain operates are unlikely to be 
explained in the near future. Current progress often 
results in more, not fewer, questions, and promising 
avenues of research have technical and ethical limita-
tions. Theories of mental operation are complicated by 
the discovery that a single physiological substrate is 
rarely responsible for the phenomena observed in 
brain operation.

While BCI systems have contributed to our knowl-
edge of the brain, they should be considered a subset of 
the tools available to study the organ of thought. As its 
name states, BCI seeks to interface with the brain, and 
a useful interface establishes a safe, persistent relation-
ship. BCI requires neural probes, but the most accurate 
tools for probing brains – surgical implants of electro-
des – are medically dangerous because they involve 
materials that react with neurons and vital supporting 
tissues [4–7]. Consequently, though they can achieve 
spectacular results over short periods, implanted elec-
trodes are limited to rare cases of where therapy requires 
them. However, unprecedented progress in materials 
science, particularly in the fabrication of adaptable, bio-
logically compatible probes, is expanding the safety zone 
for brain interfacing, and it is likely that techniques 
which are currently unsafe or unreliable will become 
commonplace in the future [8–10].

Advances in safety are paradigmatic of BCI’s rapid 
evolution. In approximately a century since its discov-
ery, brain sensing and recording technology has made 
progress that was unimaginable in previous eras and 
that has nearly kept pace with imagination during our 
own. The rate of change in BCI, and the capacity of 
engineers to create boundary-breaking components, 
makes it difficult to categorize BCI’s elementary tools, 
methods and data formats. The P2731 Glossary and 
Functional Model attempt to remedy this situation, 
and the remainder of this paper describes the role of 
physiology in this developing IEEE standard.

The paper is organized as follows. Section 2 discusses 
the cerebral structures most exposed to BCI, and thus by 
no means should be considered a comprehensive intro-
duction to cerebral anatomy. Section 3 describes how 
the sensors most commonly used in BCI relate to cere-
bral structures. Brains produce myriad signals, and 
Section 4 describes the subset most commonly used in 
BCI. Section 5 covers recent advances in neurophysiol-
ogy that may one day support more advanced BCI 

applications. Section 6 explains physiological impedi-
ments to establishing a reliable cerebral interface, and 
Section 7 offers our working group’s conclusions about 
the role of physiology in the P2731 Functional Model.

2. Cerebral Physiology

2.1. Gross anatomy of the brain

If we expose a brain, the visible surface is known as the 
cerebral cortex (Figure 1). The cerebral cortex is the 
outer surface of the cerebrum, which in turn contains 
numerous internal structures, and partially encloses the 
cerebellum, which protrudes visibly from the lower rear 
of the cerebrum near the brainstem. For brevity, our 
discussion will focus on the cerebral cortex because it 
informs the nomenclature of electroencephalography 
(EEG), which is the most widely used technique to 
record brain activity in nonscientific BCI applications. 
Also, a considerable amount of processing occurs within 
the cerebral cortex, including much of the mental activ-
ity considered uniquely human, though we must 
emphasize that the cerebral cortex works in concert 
with the brain’s many parts. When necessary, we will 
introduce non-cortical features to clarify the principles 
embodied in the P2731 Functional Model.

Like other parts of the human body, the cerebral 
cortex is lateralized, that is, it possesses complementary 
sides. Even though the brain is not a sphere, by conven-
tion its sides are called the left and right hemispheres. 
One hemisphere is designated dominant, and this is 
visible in its contralateral control of hands. People 
with a dominant left hemisphere are right-handed, 
that is, it is easier to acquire fine motor control with 

Figure 1. Gross (visible) anatomy of the human brain. [License: 
Shutterstock] .
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their right hand. The opposite is true of people who have 
dominant right hemispheres. The neural organization 
that makes this possible is explained below.

The hemispheres are divided by the great longitudi-
nal fissure which runs from the front to the back of the 
head, but a thick tract of flesh called the corpus callosum 
crosses the fissure. The corpus callosum contains nerves 
and other tissues that facilitate inter-hemispheric com-
munication, and it enables the seemingly symmetrical 
hemispheres to perform specialized functions. Defects 
in the corpus callosum usually cause pathological symp-
toms, but some individuals who lack one show few 
effects. Even more surprising are cases of people who 
live with only one hemisphere [11]. This situation 
reflects an important consideration for BCI design: 
brains are highly adaptable. The brain’s adaptability 
works to the advantage of BCI, for instance in human- 
machine teaming, but it also creates ambiguities in BCI 
system design because mental operations vary among 
individuals.

2.2. Anatomic organization of the cerebral cortex

An intact brain displays four primary structures: the 
frontal, temporal, parietal and occipital lobes 
(Figure 1). Brains may appear incoherent at first glance, 
and there are considerable differences among indivi-
duals due to age, health, gender, body mass and devel-
opment factors [12,13]. Nonetheless, cerebral lobes 
possess enough regularities in the general population 
to identify them, and researchers periodically develop 
new approaches to defining cerebral regions with 
domain-specific accuracy [14,15]. Each lobe of the cere-
bral cortex forms a section of one hemisphere, and, 
though they mirror each other’s appearance, the left 
and right sections often perform distinct tasks within 
the lobe’s field of operation. Thus, though the brain 
contains eight visible sections, the lobes are named as 
singular structures across the two hemispheres. The rift 
that separates the left and right hemispheres has several 
names: the cerebral fissure, the great longitudinal fis-
sure, the interhemispheric cerebral fissure and the med-
ian longitudinal fissure. Lobes communicate with their 
counterparts via the corpus callosum, and they connect 
to other regions of the brain and the spinal cord over 
thinner channels of nerves.

Figures 2 and 4 name the primary gyri and sulci, the 
ridges and grooves that give the brain its convoluted 
appearance. Most lobes are separated by a prominent 
sulcus which may extend for centimeters. Convolutions 
increase the surface area of the cerebral cortex, and, as 
a consequence, much of the functional surface of the 
brain is folded into sulci beneath its visible surface. 

A notable sub-structure is the insular cortex, or insula, 
which is sometimes called ‘the fifth lobe’ as depicted in 
Figures 3 [16].

The anatomical organization of the cerebral cortex 
has consequences for BCI because cortical signals are 
more or less accessible depending on their location on 
a gyrus or sulcus and their position under the skull. 
Some signals are relatively easy to record while others 
require surgery, modified sensor geometry or large-scale 
equipment. Note that there may be significant differ-
ences in the cytoarchitectonics (or cellular organization) 
of individual brains which have no outcome on mental 
ability. As the following examples demonstrate, the 
three levels of gross cerebral anatomy – hemisphere, 
lobe and cortex – correspond to mental operations 
that are relevant to BCI.

Figure 2. Lateral view of the brain [License: Kenhub] .

Figure 3. The insular cortex exposed [License: Kenhub] .
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The contralateral relationship of brain to body 
requires counter-intuitive organization. Visual proces-
sing begins in the occipital lobe at the brain’s posterior, 
but optic nerves from the left and right hemispheres 
cross before reaching the retinal nerves that convert 
light into electrochemical impulses. The left hemisphere 
processes the right eye’s visual field, and the brain cor-
rects for both its contralateral connections and the fact 
that retinal images are inverted. Ears rest nearly on top 
of the parietal lobe’s auditory processing regions, but 
they, too, have primarily links to the opposite hemi-
sphere. The same principle applies to nerves from sen-
sory motor regions which extend to skeletal muscles 
(voluntary muscles on limbs) via the spinal cord [17]. 
Thus the right hemisphere controls the left arm and vice 
versa. Whenever BCI relies on localizing the origin of 
a physiological signal, system developers must account 
for the brain’s map of the body. This is particularly 
important because three of the most common interfa-
cing methods – sounds, viewable shapes and imagined 
movements – are processed contralaterally, that is, on 
the opposite side of the brain where they are presented, 
imagined or remembered [18,19].

2.3. Functional organization of the cerebral cortex

Cerebral lobes are associated with a wide range of men-
tal processes. These processes cover some, but by no 
means all, aspects of human behavior, and considerable 
research remains to identify the neurophysiological 
basis of many human activities. Table 1 summarizes 
the activities typically found in overviews of cerebral 
lobes.

Functional subdivisions of a cerebral lobe can often 
be identified with the gyri and sulci that compose it. 
Table 2 offers a sample of the functional regions often 
targeted by BCI sensors.

Diagrams of cerebral anatomy associate specific 
structures with function, but, when considering 
a phrase such as visual cortex or speech center, the 
word ‘primary’ is an important qualifier. The brain can 
be mapped into regions that differ in their cellular 
organization, and these regions often correspond to 
meaningful functions. For instance, speech production 
and comprehension are, respectively, related to Broca’s 
area, which is located in the inferior frontal gyrus [25] 
and Wernicke’s area, which centers on the posterior end 
of the left temporal gyrus. Attempts to map cerebral 
regions and to identify regions with functions began in 
the early 20th century. No consensus on the number of 
cerebral regions exists, and most researchers admit 
more work needs to be done, but convincing arguments 
are made for at least 180 functional regions per hemi-
sphere [14].

Many mental operations do not occur entirely in 
primary centers, and some studies suggest the borders 
of a particular region, or even a lobe, are ill-defined or 
‘more a convenient fiction than anatomical entity’ 
[26,27]. These ambiguities arise from the natural flex-
ibility of brains, anatomical differences among indivi-
duals, and the fact that a given operation typically enlists 
multiple regions. Examples from vision and hearing give 
a sense of this complexity.

Figure 4. Dorsal view of the brain [License: Kenhub] .

Table 1. General functions of cerebral lobes.
Region Purpose

Frontal 
lobe

Executive functions including planning and decision 
making, attention, error correction, motor processing and 
control of voluntary movement [20]

Parietal 
lobe

Somatosensory (bodily) sensations, selective attention to 
stimuli, visual processing, proprioception, bodily 
coordination and analysis of space [21]

Temporal 
lobe

Auditory perception, comprehension of speech, visual and 
semantic memory, motivation, the hippocampus and 
other parts of the limbic system, an evolutionarily earlier 
part of the cerebrum mostly separate from the cerebral 
cortex [22,23,27]

Occipital 
lobe

Primary visual processing [24]

Table 2. A selection of functional regions in the cerebral cortex.
Region Location Function

Frontal 
lobe

Precentral gyrus Motor control 
(movement)

Parietal 
lobe

Postcentral gyrus Perception of 
bodily 
sensations

Temporal 
lobe

Superior (topmost) temporal gyrus, 
sulcus between superior and middle 
temporal gyri

Auditory 
perception

Occipital 
lobe

Superior and inferior gyri Visual perception
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Optic nerves transmit information from retinas to 
the occipital lobe. After undergoing processing in the 
occipital lobe, visual signals are then split into two 
physiologically distinct streams – the dorsal (top) visual 
stream which runs from the occipital lobe through the 
parietal lobe, and the ventral (bottom) visual stream 
which runs from the occipital lobe to the temporal 
lobe and several subcortical structures [28]. Motor 
responses, sensory memory and imagination, and con-
scious awareness enlist even more parts of the brain. 
While much of the brain’s processing occurs in multiple 
locations or linear streams, its organization does contain 
identifiable nodes that can interface effectively with BCI. 
The following example clarifies this statement.

In the early 1960s neuropsychologists discovered 
a curious phenomenon called right-ear advantage 
(REA) or left-ear disadvantage (LED). This refers to an 
experimental user’s capacity to discern information pre-
sented to the right ear better than the left. These experi-
ments relied on the known position of lesions on the 
auditory cortex to measure the performance of the right 
ear/left hemisphere and left ear/right hemisphere in 
discriminating spoken language. In most of the human 
population, the left hemisphere controls comprehension 
of language, but in some people, namely the left-handed, 
the situation is reversed. As expected, the right ear of 
right-handed individuals exhibited superior perfor-
mance (and vice versa), leading researchers to conclude 
that phonological processing was concentrated in the 
dominant hemisphere [29]. Later generations of audiol-
ogists refined this experimental model, now called 
dichotic listening, by using EEG to detect how spoken 
words were perceived, processed and comprehended by 
the two hemispheres which use the corpus callosum to 
coordinate auditory data [30]. The results of this experi-
ment will be used to illustrate some of BCI’s basic 
principles later in this paper.

2.4. Structure of the cerebral cortex

Though it is only 2–4 mm thick, the cerebral cortex 
makes up approximately 80% of the brain’s mass. The 
surface area of each hemisphere is approximately 
1,850 cm2 – ‘about the size of a medium pizza’ [31] – 
but, due to convolutions approximately 66% of the 
brain’s surface is folded into sulci [32]. The internal 
organization of the cerebral cortex is laminar, and it 
generally has six layers numbered I–VI. However, this 
number does not hold for all cortical regions, and the 
quantity, density, thickness and cellular composition of 
layers varies throughout the cerebral cortex and the 
cerebral structures located beneath it [13,33].

Each layer of the cerebral cortex consists of tightly 
packed neurons connected to their neighbors, other 
layers, and, for some layers, to neurons outside the 
cerebral cortex. By definition, these latter cells are 
located under the cerebral cortex. Neurons have 
a fundamental resemblance to other cells, but, in addi-
tion to a central cell body known as the soma, which 
comes in many shapes, they contain unique features. 
Most notable are the elongated axons and dendrites. 
When the axon of one neuron meets the dendrite of 
another, they form a synapse. Synapses are electroche-
mical junctions that enable neurons to form complex, 
relatively high-speed networks, and Figure 5 portrays 
the distinctive structures of a neuron and a synapse.

The brain also contains a range of cells that support 
its electrical, biochemical and metabolic functions. 
Collectively known as glia, these cells support, protect, 
nourish and insulate neurons, and they are essential for 
proper cognition as well as health. The primary cate-
gories of glial cells are microglia, astrocytes, oligoden-
drocytes and NG2-glia progenitor cells. 
Oligodendrocytes are essential to the operation of the 
brain as an electrical organ because they act as insulators 
when signals are propagating through axons [34].

Alongside an idealized neuron, Figure 5 depicts an 
oligodendrocyte cell whose branches enclose the axon of 
a cerebral neuron in a myelin sheath. While myelin is 
not essential for neural function, it is used in many 
classes of neurons within and outside the central ner-
vous system to enhance electrical conduction. In the 
brain, unmyelinated neurons constitute ‘gray matter’ 
while myelinated neurons are called ‘white matter’ 
because a mass of fatty myelin has a white appearance 
[35,36]. Myelin sheaths are punctuated by breaks called 
Nodes of Ranvier that enable an action potential to 
propagate efficiently through the length of the axon 
through a process known as saltatory conduction [37].

Figure 5. Basic structure of a cerebral neuron [License: Kenhub] .
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Neurons do not form simple circuits. Instead axons 
and dendrites branch, which connects a single neuron to 
many others. The general term for a neural extension is 
neurite, and neurites range from a few microns to 
a meter in length. The complexity of neural networks 
[31] accounts for the brain’s astonishing computational 
power and the difficulty of describing it in unambiguous 
terms. A human brain contains approximately 86 billion 
neurons (20% of which are in the cerebral cortex), and 
each one participates in multiple processes [38]. 
Whether in the brain or body, the presence of 
a myelin sheath offers a way of recognizing neurons. 
Because cortical neurons are unmyelinated, the outer 
surface of the brain is gray. Immediately below the gray 
matter of the cerebral cortex lies white matter, a mass of 
neurons with myelinated axons that efficiently connect 
the cerebral cortex with distant regions throughout the 
brain. We should note that neurons are not the only 
actively communicating cells in the brain. Glial cells 
were once considered mere scaffolds, but in recent 
years researchers have discovered cross-talk between 
astrocytes and oligodendrocytes [39], and, somewhat 
surprisingly, oligodendrocytes sometimes form 
synapses with neurons [34]. Much remains to be dis-
covered about the functional roles of glial cells.

Neurons exhibit many forms, but most layers of the 
cerebral cortex are dominated by pyramidal neurons, so 
named for the shape of their soma or cell body. The 
geometry of pyramidal neurons accounts makes them 
exceptional candidates for BCI. This is because some 
layers of the cerebral cortex contain densely packed 
axons which are perpendicular to the skull’s surface 
[40]. Cortical neurons often fire in synchrony, and the 
uniform direction of cortical signals (which travel down 

axons) make them relatively strong – especially if 
located on a bulging gyrus rather than are ceding sulcus. 
Figure 6 shows a cross-section of a typical layer of 
pyramidal cells in the cerebral cortex. An upcoming 
part of this paper discusses how the layered architecture 
of the cerebral cortex and its proximity to the skull 
enables EEG, a sensing technique that is used widely 
because it is safe, cost effective and sufficiently accurate 
for many BCI applications.

3. BCI sensors

3.1. Implanted microelectrodes

The use of electrodes to interface with the nervous 
system began with Luigi Galvani’s experiments on 
frogs in the late 18th century. In the 20th century, it 
became practical to implant electrodes into living 
human brains to both record and stimulate mental 
activity. While the first implants recorded a locality of 
multiple neurons, for decades it has been possible to 
insert electrodes called ‘patch clamps’ into a single neu-
ron using either metal filaments or a glass pipette filled 
with a conductive fluid [36]. Whether implanted 
directly into a neuron or recording the activity of 
a local population, microelectrodes have facilitated 
enormous progress in neurophysiology and the disci-
plines which depend on it. Because they can be inserted 
with precision, implants enable BCI applications to tap 
the cerebral regions most appropriate to the required 
output, e.g. control of movement or speech.

But, there are physical limitations on electrode 
implantation. Conductive materials degrade rapidly in 
living bodies, and, in turn, they damage organic struc-
tures either directly through surgery or through by- 
products of decay. Practical applications require large 
numbers of electrodes that are powered, long-lasting, 
biologically compatible and connected to external trans-
ducers. Animal research has been limited by technology 
and increasing ethical concerns, and, for the same rea-
sons, human studies have been confined to medically 
justified situations. When allowed, promising results 
have been obtained as early as 1998, when a single 
electrode was implanted in the motor cortex of 
a patient with severe ALS (amyotrophic lateral sclerosis, 
the ‘locked in’ syndrome also known as Lou Gehrig’s 
Disease). Although ‘locked in’, researchers were able to 
give her control of a computer cursor with a high degree 
of accuracy shortly before her death [41].

Progress in several related disciplines is making the 
use of microelectrodes in BCI increasingly feasible. 
Multiplex, bendable arrays allow a single surgical inter-
vention to perform more tasks. Biocompatible materials 

Figure 6. A layer of pyramidal neurons in the cerebral cortex. 
[License: Shutterstock] .
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protect tissues and electronics, and microchip-based 
fabrication processes are bringing new efficiencies and 
design paradigms to the BCI field. Wireless interfaces 
reduce disruption of cerebral tissues and infection chan-
nels caused by wires through the skull and protective 
membranes which surround the brain – please see ‘A 
Functional BCI Model by the P2731 working group: 
Transducer in the same issue for a summary of wireless 
applications. Later, we will discuss how biomimetic 
materials are leading advances in implanted electrodes 
[5,42], but for now medical, technical and ethical issues 
render the use of microelectrodes in BCI impractical 
except in research projects.

3.2. EEG

In 1924, the German psychiatrist Hans Berger became 
the first person to measure the electrical activity of the 
human brain with an EEG, and his 1929 report intro-
duced the terms alpha waves and beta waves which are 
still in use [43]. Berger’s work built on pioneering stu-
dies of animal brains, and he confirmed that human 
brains produce characteristic waveforms similar to 
those found in dogs and other animals. By 1947, the 
American EEG Society was founded [44], and EEG 
became an important instrument for studying the 
brain. By the 1970s, UCLA professor Jacques Vidal 
envisioned the possibility of using EEG to couple brains 
with computers, and he introduced the term BCI 
(Brain-Computer Interface) [45].

Berger inserted needle electrodes into the scalp, but, 
by 1935, noninvasive electrode pads had been intro-
duced [46]. Today EEG is commonly an array of elec-
trode pads placed at regular intervals on the user’s scalp. 
The safe and relatively comfortable noninvasive nature 
of EEG stands in stark contrast to the invasive surgery 
required to place microelectrodes into the brain. While 
both techniques offer temporal resolution of less than 1 

millisecond [47], microelectrodes offer superior spatial 
resolution but are often localized to a certain brain area, 
while EEG sensor arrays can cover the whole scalp.

EEG arrays range from consumer-grade headbands 
containing a minimal number of fixed contact points to 
flexible matrices of 256 sensors that can be placed with 
precision. Although there are several conventions for 
naming and placing electrodes, a widely used method is 
the International 10–20 System portrayed in Figure 7. 
This approach idealizes the brain as a sphere. Electrodes 
are placed at increments of either 10% or 20% following 
standard lines across anatomical extremes. With some 
exceptions, letters denote the cortical structures below 
the sensor. For instance, the O-series spans the occipital 
lobe, and the P-series spans the parietal lobe. Numbers 
denote an electrode’s position on a linear axis [48]. It is 
important to remember that brains vary in size and 
shape, so proper placement of electrodes requires train-
ing, practice and care.

The majority of EEG sensors gather data about brain 
activities. However, arrays also include one or more 
reference electrodes that are used to filter power-line 
noise and electrical interference generated by muscles 
and other physiological events. Reference electrodes are 
often connected to the user’s ears but may be placed in 
other locations.

The example of REA (right-ear advantage) given ear-
lier illustrates how the physiology of the brain both 
enables and hinders the use of EEG. The phenomenon 
was reported in 1961, and its conclusions about hemi-
spheric cross-talk were inferred from experimental 
results. By 2004 researchers could use EEG to measure 
the effect, not only at each ear but across the brain. Their 
method was to place a band of sensors between the ears, 
specifically P7, P3, PZ, P4 and P8 positions shown in 
Figure 7. The most extreme positions, P7 and P8, are 
located near the anterior superior temporal gyrus, which 
contains much of the primary auditory cortex [49]. 

Figure 7. Map of EEG placement points. [Commissioned illustration] .
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After presenting stimuli, they searched for the timing of 
three particular waveforms as they passed between the 
auditory regions of each hemisphere [30]. These wave-
forms will be described in a following section.

The study above shows that it is possible to localize 
electrical phenomena with EEG. However, because the 
brain and surrounding tissues are both electrically con-
ductive and electrically active, even in resting states, 
accurate interpretation requires heavy intervention to 
extract the desired signals from a noisy environment. 
Extraction techniques are covered in depth by a ‘A 
Functional BCI Model by the P2731 working group: 
Transducer’ in this issue.

3.3. Electrocorticography

Electrocorticography (ECoG) stands between EEG and 
implanted microelectrodes in safety and accuracy. 
ECoG requires the skull to be opened, but, unlike the 
microelectrodes described earlier, sensors are placed on 
the thick membranes collectively called the meninges 
that protect the brain – the safest placement point – or 
directly on the cerebral cortex below the meninges.

As Figure 8 shows, ECoG requires surgery, but it 
offers advantages over implants and EEG. It is safer 
than probes which penetrate the brain, and it offers 
better signal quality than surface probes. ECoG arrays 
resemble EEG arrays, but, for practical reasons, they 
cover a smaller area, and thus have more targeted appli-
cations that interface with a particular region.

Though less intrusive than implanted electrodes, 
ECoG arrays suffer from some of the same issues, nota-
bly risk of infection and reduction in sensitivity due to 
chronic tissue inflammation. These issues are partly 
determined by where they are placed. The meninges 
consist of three main layers, the dura (which adheres 
to the interior surface of the skull), the arachnoid and 
the pia (which adheres to the outer surface of the brain) 
[50], and inflammatory responses differ among layers 
[51]. Wireless systems improve performance while 
reducing risk of infection. By mapping the folds of an 
individual’s brain prior to implantation, researchers 
have produced custom-molded ECoG arrays that are 
more accurate than flat or uniformly curved arrays [51].

3.4. fNIRS

Functional Near-Infrared Spectroscopy (fNIRS) is 
a head-mounted sensor array. Though its resemblance 
to EEG is superficial, it is a noninvasive technique that is 
comparable to EEG in safety and user comfort. Sensor 
placement can also be determined by existing EEG 
standards, e.g. the 10–20 system presented above [52].

Where fNIRS diverges from EEG is signal acquisi-
tion. Electrodes measure neural signals directly, but the 
pads used in fNIRS combine light-emitting diodes with 
optodes which respond to light. Human tissues are 
effectively transparent to near infrared light. During an 
fNIRS session, LEDs direct light through the skull at 
wavelengths between 650 and 850 nm, and receiving 
optodes measure the scattering and absorption of light 
once it passes through the brain [53]. fNIRS is 
a hemodynamic system; namely, it depends on neuro-
vascular coupling. Like any cell, when a neuron becomes 
active, it demands more oxygen, and neural activity can 
be tracked by measuring changes in the oxygen levels of 
cerebral arteries [54]. The term up-regulation refers to 
the activation of neurons, say the onset of finger tapping 
in the motor cortex, and neurons signal the need by 
releasing chemical signals to nearby blood vessels which 
dilate in response [55]. Unlike electrical impulses which 
can be recorded in real time, there is a time delay 
between the onset of a stimulus and the emergence of 
usable data in an fNIRS system. Oxygenation changes 
include neural signaling, dilation of nearby capillaries, 
the delivery of oxygenated blood and the return to 
metabolic baseline, and the entire process can take up 
to 10 seconds [56]. Thus, hemodynamic BCI requires 
longer recording time than its electrical counterparts to 
obtain similar results.

Although light passes through most biological tis-
sues, the molecules which deliver oxygen to tissues 
respond differently. Blood cells contain hemoglobin, 

Figure 8. Example of an ECoG implant [License: Creative 
Commons from ‘Medical gallery of Blausen Medical 2014’. 
WikiJournal of Medicine] .
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a protein that uses iron to bind oxygen, and oxygenated 
and deoxygenated hemoglobin absorb light at different 
wavelengths. These conditions enable a typical fNIRS 
system to record vascular activity in targeted neural 
regions with spatial resolution of 1–10 mm to a depth 
of 1.5–2.5 cm below the skull [47,57].

Analyzing the data recorded by fNIRS resembles the 
workflow, if not analytic methods, required by electro-
des. Features must be extracted from background inter-
ference, for instance, heart beat, breathing and 
movements of the head, and then interpreted as mental 
activity. Though its time resolution is inferior to EEG, 
fNIRS offers complementary data that is useful in multi-
modal studies which are increasingly becoming the 
norm in brain research [47,58].

3.5. fMRI

Similar to fNIRS, functional magnetic image resonance 
(fMRI) uses hemodynamics to detect mental activity. 
However, fMRI uses magnetic fields rather than light, 
an approach that offers advantages and disadvantages 
relative to other recording techniques.

The primary modality within fMRI is BOLD (Blood 
Oxygen Level Dependent) MRI. As with light, oxyhemo-
globin and deoxyhemoglobin and other components of 
tissue, respond differently to magnetic fields, and these 
changes can be tracked by radio pulses. fMRI exploits this 
trait to pinpoint changes in metabolism that accompany up- 
regulated neural activity. A complementary technique is 
arterial spin labeling (ASL) MRI which measures cerebral 
blood flow (CBF). However, ASL’s requirements, which 
include an injected contrast agent, have limited its use [55].

The apparatus used in fMRI differs radically from the 
BCI methods explained above. Users must lay on their 
backs, and their head is surrounded, but not touched, by 
a ring of magnetic sensors. Though safe, the confine-
ment and noise of fMRI can be intimidating to users, 
and the supine position alters physiological responses to 
stimuli [59]. Movements by users disturb recording, but 
efforts to increase the time resolution of fMRI are 
improving its effectiveness [60].

The main advantages of fMRI over fNIRS and the 
sensor systems introduced previously is its ability to 
probe widely and deeply into the brain. Since its inven-
tion in 1990, the spatial resolution of fMRI has steadily 
improved. Conventional systems offer resolution down 
to 1 mm, and ultra-high resolution systems can inspect 
the organization of cells in the cerebral cortex [61]. 
fMRI supports an enormous range of scientific and 
medical applications. Though it cannot match the con-
venience of EEG or fNIRS for practical applications in 
BCI, fMRI is used to discern the neural architecture that 

directs perception and other mental activities. For 
instance, fMRI enabled researchers to give functional 
descriptions of the visual streams mentioned above. By 
varying the attention of users, it was shown that the 
dorsal stream processes the position while the ventral 
stream processes the identity of objects in the visual 
field [62].

By combining fMRI with techniques which offer 
superior temporal resolution, neural processes can be 
accurately localized, sequenced and related to cerebral 
anatomy. Hybrid systems may combine fMRI with 
other sensing techniques for simultaneous recording 
that enhances the design of subsequent BCI applications 
[63–66].

3.6. MEG

Due to size, cost and complexity, magnetoencephalo-
graphy (MEG) is more of a diagnostic tool rather than 
a practical tool for BCI. But MEG is widely used in 
hospitals, often in conjunction with EEG. In 
a therapeutic setting, the ensemble is used to diagnose 
epilepsy and for individual brain mapping prior to sur-
gery. Despite its practical limitations, MEG’s method for 
detecting neural signals is instructive for BCI developers 
as it reveals yet another approach to sensor design.

Earlier, we remarked that the brain is an electrical 
organ, and it shares traits with electromechanical sys-
tems. As a result of the voltages measured by electrodes, 
neurons emanate magnetic fields perpendicularly to the 
direction of their current. As with EEG, MEG benefits 
from the relatively powerful activity of layered pyrami-
dal cells in the cerebral cortex and other structures 
within the brain. In contrast to EEG, which detects 
electrical signals, MEG senses fluctuations in magnetic 
fields, both on the surface of the experimental user’s 
head. However, in contrast to electrodes, magnetic sen-
sors do not make physical contact with the scalp, nor do 
they contend with physiological interference.

Biological tissues are almost transparent to magnetic 
fields, and many fields are canceled by their neighbors 
leaving a relatively clean signal for interpretation [67]. The 
downside of MEG is that the brain’s magnetic fields are 
orders of magnitude weaker than the Earth’s, so MEG 
research must be conducted in a magnetically shielded 
room. Aside from a room with strict environmental 
requirements, MEG apparatus resembles fMRI from the 
user perspective. Though they can sit or recline, a dome 
surrounds the user’s head, and MEG sensors inside it must 
be cooled nearly to absolute zero. Promising new 
approaches may enhance its relatively poor spatial resolu-
tion [68], helping the research community to more accu-
rately map function to structure.
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3.7. Categorizing BCI sensors

Figure 9 summarizes the advantages and limitations of 
commonly used imaging modalities for BCI systems. 
There are other techniques for brain recording, notably 
positron emission tomography (PET), but these might be 
better described as imaging rather than interfacing meth-
ods, and they are outside the scope of this paper. 
Strengths and weaknesses accompany each of the tech-
nologies currently in use. None offers the ideal combina-
tion of safety, affordability, portability, comfort and high 
spatiotemporal resolution, which is why BCI methods are 
increasingly used in tandem as advanced equipment 
becomes more accessible. For instance, when used simul-
taneously, fNIRS can be used to improve the spatial 
resolution of EEG [69].

Several ways of categorizing BCIs are commonly used 
in scientific literature, notably invasive vs noninvasive 
and electrical vs. hemodynamic. We have avoided these 
categories because, while useful in specific contexts, they 
blur significant issues rooted in physiology. For instance, 
implanted electrodes, ECoG and scalp-mounted EEG are 
arguably the same electrical technology, but they differ in 
invasiveness, accuracy and ease of use. EEG and fNIRS 
contrast in signal acquisition, but they are similar in 

safety, ease of use and cost. fMRI, MEG and techniques 
such as PET require large installations which erect high 
barriers to use.

Rapid advances in materials science and sensing 
technologies may also blur categories. Tandem record-
ings taken by different systems have been used to 
improve the design of safer, more convenient systems 
[70]. And entirely new approaches have produced 
unprecedented improvements in foundational technol-
ogies. For example, the introduction of optical techni-
ques have shrunk experimental MEG sensors to the size 
of chips that work at room temperature. It is conceivable 
that a radically evolved MEG will one day approach 
EEG in cost and convenience [68,71].

Advances in analysis are equally important. Analytics 
are supported by improvements in generic models of the 
brain which allow meaningful results to be extrapolated 
from relatively poor data sets [72], and the P2731 work 
group is advocating standardization of data formats and 
experimental documentation that can accelerate the 
consolidation of experimental results. In this situation, 
without ignoring useful categorizations, we think it is 
best to keep an open mind as to which technologies will 
define the future.

Figure 9. Various brain signal acquisition methods and their spatiotemporal extent [206] .

10 A. HOSSAINI ET AL.



4. Typical signals used in BCI

Since the discovery of alpha waves in the 1920s, 
researchers have identified numerous forms of elec-
trical signals in the brain. For BCI to deliver its 
promise – mental control of external devices – 
a neurophysiological signal must be consistent, 
detectable and clearly express an intention. While 
progress continues, some signals have already 
become de facto standards in BCI. This section will 
review the signals most commonly used in BCI along 
with their physiological context [73]. For more infor-
mation about the origin, propagation and detection 
of the brain’s extracellular electrical signals, see 
Buzsáki and others [74].

4.1. Action potentials

Like all cells, a membrane separates the interior of 
neurons from their surroundings which are typically 
other cells and extracellular fluids. Neuronal mem-
branes are selectively permeable to ions, and they use 
ion pumps to actively maintain a voltage difference 
of −40 mV to −90 mV with their surroundings. This 
difference is known as the neuron’s resting potential. 
Resting potential resists perturbations up to a certain 
threshold, but, when a stimulus is strong enough to 
cross the threshold, a neuron rapidly changes polar-
ity by reversing its ionic balance as shown in 
Figure 10. In a matter of milliseconds, the neuron’s 
interior becomes as much as 50 mV positive relative 

to its external medium, and, during the course of its 
response, it may change polarity several times before 
returning to its resting state. This radical depolariza-
tion causes the neuron to ‘fire’, that is, to transmit 
signals to connected neurons. After depolarization, 
a neuron typically passes through a refractory period 
where no level of stimulus will change its polarity. 
A depolarization event is known as the action poten-
tial or firing of a neuron, and its propagation to 
connected neurons via axons form the fundamental 
signals of mental activity [75].

Recording action potentials requires highly localized 
sensors such as patch clamps or microelectrodes which 
have been placed with great precision. Another approach 
uses plasticity, the brain’s capacity to alter its structure, to 
improve results. Earlier we described an experiment where 
a microelectrode was implanted into the motor cortex of 
a patient with advanced ALS. The microelectrode was 
coated with neurotrophic factors that encouraged neurites 
in the area of interest to grow into the hollow tip of an 
electrode. Within weeks, the recording apparatus began 
detecting action potentials, and on Day 45 the researchers 
began training the patient to control a cursor [41].

In the future, neurons could be integrated with BCI via 
neurotrophic electrodes – essentially synthetic nerves – that 
insinuate themselves into the natural brain by forming 
synapses that both sense and modulate action potentials. 
For now direct measurement of action potentials is limited 
to experiments on animals and justified medical interven-
tions. Although use of action potentials is currently unfea-
sible, the concept is important for understanding BCI 
because neurons work in concert: millions of neurons work-
ing together produce signals that reach the scalp. But, like 
the brain, pathways to measurement are also convoluted. In 
the case of EEG, research has shown that an action potential 
occurs too rapidly to create significant activity on the scalp. 
Instead EEG measures the longer lasting consequences of 
neural firing, the so-called postsynaptic potentials of cortical 
pyramidal cells. These temporarily change the cell into an 
electrical dipole, that is, a body that is negatively charged at 
one end and positively charged at the other [73]. As the next 
section shows, much of what BCI measures is not the direct 
electrical activity of neurons, whether one or millions, but 
the cascade of physiological effects that follow on the firing 
of neurons.

4.2. Local field potentials

Populations of neurons can be targeted with extracellu-
lar electrodes implanted in the region of interest. In 
these cases, electrodes are recording local field potentials 
(LFPs). It is generally accepted that an LFP represents 
a variety of voltage fluctuations generated by target 

Figure 10. Typical waveform generated by an activated neuron 
[License: Chris73, Wikimedia Commons] .
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populations of neurons [76]. Despite years of study, 
questions of how LFPs are generated, their spatial 
extent, and how they relate to signals acquired by dif-
ferent sensing methods, e.g. fMRI vs. EEG, are ongoing 
subjects of investigation [77–79]. The varying structures 
of neurons demonstrate and often cause the challenges 
associated with signal acquisition.

So far, we have mainly discussed pyramidal neurons in 
the cerebral cortex. Like trees, these neurons have a well- 
defined apex and trunk-like structure that enables them 
to function like dipoles. The same characteristics that 
make pyramidal layers of the cerebral cortex accessible 
to EEG may activate LFP sensors. But, if this were the 
case, then spherical neurons in non-laminar structures – 
such as the medium-sized spiny neurons in the striatum, 
a cluster beneath the cerebral cortex – would cancel each 
other out because their electrical fields would randomly 
interfere with each other. This is not the case, so more 
complex hypotheses are being investigated [80].

Primate and human studies with implanted LFP sen-
sors have shown promising results in the control of 
robotic prostheses. In some cases, LFPs outperform sys-
tems which record action potentials [81,82]. For instance, 
primates with implants that measure LFPs in the parietal 
reach region (PRR), a section of the parietal cortex con-
nected to the motor cortex, have shown that experimental 
subjects can quickly learn to perform direction of move-
ment tasks. These results would likely transfer to humans, 
and LFP sensors have the advantage of degrading more 
slowly than single-cell implants [82]. Though safer than 
patch clamps, for now the dangers associated with 
implants limit the use of LFP sensors within humans. 
Data gathered by invasive mapping of LFPs in other 
species have supported the development of noninvasive 
tools for humans, but this progress has occurred mostly 
through analytics rather than material advances [83]. As 
long-term implants to detect LFPs become feasible, 
understanding ‘the geometry of the[se] neural currents’ 
can be used to optimize the design of electrodes for 
controlling prostheses and other applications [84].

4.3. Event-related potentials

Event-related potentials (ERP) are voltage fluctuations 
generated when regions of the brain respond to stimuli, 
prepare for a movement or perform mental operations 
such as imagining movement. When sensed by EEG, 
ERPs are detected as consistent changes in micro- 
voltage levels on the scalp, but these changes are usually 
masked by higher amplitude background noise. To 
compensate, ‘time locked signal averaging is necessary 
to extract ERPs from the raw data’ [85]. This method 
requires researchers to segment a recording into a series 

of ‘epochs’ that begin with the stimulus that causes the 
ERP [86]. ERPs are time-locked to stimuli, so an epoch 
should be long enough to include the stimulus, 
a precursor period of background data, and sufficient 
time to capture the ERP under scrutiny. Averaging a set 
of epochs allows the time-locked signal to emerge by 
decreasing the relative amplitude of noise [87]. ERPs 
have been identified for different sense modalities, but 
localizing their neural generators has proven difficult 
because of the head’s conductive properties [88,89]. 
ERP names are created by combining their polarity – 
P for positive, N for negative – with their peak latency, 
namely the time between a stimulus and their maximum 
amplitude measured in milliseconds (e.g. N250, P300) 
or the order in which they appear (e.g. P1, N2, P2). Note 
that both the onset and the maximum amplitude of an 
ERP are in reality variable, and it is the stereotypical 
waveform combined with temporal proximity to an 
hypothetical post-stimulus peak that enables researchers 
to categorize it [90–93].

The discovery of REA (right-ear advantage) given above 
illustrates the use of ERPs. Recall that the experiment was 
conducted by measuring electrical activity across the band 
of scalp connecting the ears of experimental users. A great 
deal of electrical activity is available at every sensor, so 
researchers used analytic techniques to extract the ERP as 
it peaked at each sensor. The ERP in question has three 
components: the N1, the P2 and the P300 which is also 
known as the late positive component. For simplicity, we 
can define the N1-P2 as a waveform complex that charac-
teristically occurs about 200 ms after a stimulus. It may be 
thought of as the brain’s acknowledgment of an auditory 
event. As the next section describes, the P300 is a relatively 
strong waveform that recognizes unique or ‘oddball’ events, 
and it typically peaks 300 ms after the stimulus. In the 
context of REA experiments, the P300 signals recognition 
of a word. The researchers verified this assumption, and the 
hypothesis that phonological processing occurs in the domi-
nant hemisphere, by comparing when ERPs arrived at each 
recording site. The N1-P2 acknowledgment – ‘a sound has 
been heard’ – appeared simultaneously in the auditory 
cortex of both hemispheres, but the P300 – ‘a sound has 
been interpreted’ – appeared first in the dominant auditory 
cortex then propagated to the opposing hemisphere [30]. 
Essentially, the dominant auditory cortex interpreted the 
meaning of the sound before sharing it with its counterpart. 
The process happens too quickly to notice in natural 
hearing.

EEG has high temporal resolution, so it is a good 
choice for capturing the amplitude, a measure of signal 
strength, of events that occur in less than a second. Earlier 
we noted that fNIRS can be used to improve the spatial 
resolution of EEG interpretations. This can also be done 
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with fMRI, and now we see why progress in neurophy-
siology, e.g. understanding the spatial location of neural 
tracts, supports improvements in BCI design [94]. Recent 
publications offer indices of sensory, motor, and cogni-
tive functions associated with ERP paradigms [92], and 
the P2371 working group’s goal is to provide models for 
combining these data. With sufficient work on signal 
localization, it may be possible to design external pros-
theses that operate more naturally by interfacing more 
accurately with the brain’s processing centers for hearing, 
vision, speech, touch and movement.

4.4. P300 evoked potential

The P300 evoked potential is one of the most common 
waveforms used in BCI systems. We have seen that 
P300s respond to specific forms of auditory stimuli, 
and the same applies to visual and somatosensory sti-
muli. Despite its name, a P300 can take as long as 
900 ms to reach maximum amplitude [95].

The visual P300 has two significant components 
which seem to differ in spatial and temporal distribution 
[96,97], but the details are both unresolved and beyond 
this paper’s scope. What is important for BCI design is 
its measurable parameters: amplitude and latency. 
Amplitude refers to the strength of the signal, and 
latency is the time between stimulus and the P300’s 
detection. Both can be used to interpret the degree of 
mental activities such as surprise and recognition, and 
also to describe the mental processes required to com-
pare perceptions with memories.

Because it can be extracted with relative ease, the P300 
signal is used in many control systems including the P300 
Speller detailed in other papers within this special issue. It 
can also serve as a diagnostic tool because it provides 
evidence of possible disorders in attention, learning and 
other traits without reports from the user [49].

4.5. Neural oscillations

We mentioned that Hans Berger described alpha and beta 
waves, also called neural oscillations, in his 1929 report on 
EEG. Thus, neural oscillations have been studied during the 
entire history of BCI, and, in the popular imagination, they 
are one of the primary physiological correlates with mental 
activity. Neural oscillations are created by large numbers of 
neurons firing in synchrony. Associations with the broadly 
drawn psychological states charted below are still valid, but 
neural oscillations are now recognized as signals that coor-
dinate activities across the brain. Section 5 will introduce 
some of these new horizons.

Standard accounts classify neural oscillation in the 
following ranges. As is often the case with brain studies, 
the boundaries of each category overlap in different 
references, and many researchers divide canonical 
bands into sub-bands that are distinguished either by 
frequency or location [98].

Delta (.5–4 Hz): Slow waves with relatively high 
amplitude generated during non-REM (rapid eye move-
ment) sleep [99].

Theta (4–8 Hz): Waves associated with various 
aspects of cognition and behavior, including drowsi-
ness, learning, memory, and spatial navigation [99].

Alpha (8–13 Hz): Waves representing wakeful 
relaxation, usually recorded from the visual cortex, 
and spontaneously beginning when a user closes their 
eyes [100].

Mu (8–12 Hz): Oscillations in the same range as 
alpha are known as mu-rhythms when recorded over 
sensorimotor areas [101].

Beta (13–30 Hz): Associated with waking conscious-
ness, they represent active mental concentration [102].

Gamma (30+ Hz): Waves associated with higher 
level cognitive functions such as memory, attention 
and perception [103].

It may be tempting to directly relate neural oscilla-
tions with the localized signals detailed earlier. In 
simple but fallacious equations, action potentials 
aggregate to local field potentials which in turn aggre-
gate to event-related potentials, when generated sin-
gularly, and neural oscillations in the brain’s holistic 
state. However, this is not the case. Each of these 
phenomena are generated by different causes, and, in 
addition to physiological ambiguities which are still 
being investigated, the categories we use to measure 
neural activity may reflect technical or conceptual 
constructs.

Putting aside ambiguities, neural oscillations are 
important physiological tools for BCI. They are rela-
tively easy to isolate, and it is simple to present them 
as feedback to BCI users. By attending to feedback, 
many BCI users can learn to willfully produce 
a particular oscillation. Since oscillations are asso-
ciated with relaxation, attentiveness and other useful 
states, feedback systems can support psychological 
well-being and self-control. Along with the P300, 
detection of neural oscillations can provide insights 
into the effectiveness of messaging, e.g. for marketing 
or vocational training. And, because they can be 
recorded by rudimentary EEG arrays, neural oscilla-
tions can also provide an interface signal for games, 
machine operation and other forms of digital 
engagement.
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4.6. Sensorimotor rhythms & motor imagery

Sensorimotor rhythms are produced by the primary 
motor (M1) and sensory areas (S1). These areas are 
depicted in the precentral and postcentral gyri in 
Figures 2 and 4, and in EEG they are prominent in the 
sensors adjacent to electrode CZ in Figure 7 [104], 
especially C3 and C4 [105] Taken together, these 
regions form the sensorimotor cortex (SM1) surround-
ing the central sulcus that separates the frontal and 
parietal lobes. These well-mapped areas are adjacent to 
the skull, and thus they are a prime target for EEG and 
MEG, both of which are more sensitive to signals, spe-
cifically changes in amplitude, that emanate from the 
surface of the cerebral cortex [106].

Sensorimotor rhythms (SMR) oscillate in the μ band 
of 8–12 Hz often with beta (~20 Hz) and gamma 
(~40 Hz) components [107]. SMRs are a resting or 
‘idling’ oscillation [108]; that is, they manifest most 
strongly when an individual is awake but at rest.

SMRs are important for BCI because bodily motion is 
largely under conscious control. This means users can 
modulate the amplitude of SMRs by initiating or ima-
gining movements, for instance, grasping a glass of 
water [109]. SMRs are convenient for users because 
they can be generated by responding to easily under-
stood suggestions. SMRs are particularly useful for BCI 
because imagined movement produces responses simi-
lar to actual movement.

Motor imagery (MI) is defined as ‘mental rehearsal of 
a motor act without any movement execution’ [110]. 
Even when paralyzed, most people can imagine moving 
a specific limb to the left, right, up or down, and the act 
of imagination generates activity in the corresponding 
region of the motor cortex. Note that this activity is 
contralateral to the part involved. Figure 11 shows 
how regions of the sensorimotor cortex map to 
a homunculus that corresponds to relevant areas of the 
body [111]. The motor cortex controls movement deci-
sions, memories and imagination, and changes in SMRs 
are the physiological correlates of these mental activities 
[1,112].

Detection of MI depends on event-related desyn-
chronization (ERD). Prior to action, whether physi-
cal or imagined, the motor cortex attenuates the 
idling μ-rhythm in a process called desynchroniza-
tion. Desynchronization weakens the amplitude of μ- 
rhythm components, and it signals that an individual 
has engaged the sensorimotor system by deciding to 
move or imagining movement. When the activity 
ends, and the sensorimotor cortex returns to its 
resting state, the μ-rhythm reappears in event- 
related synchronization (ERS). Regular detection of 

ERD/ERS enables a BCI (sometimes called an SMR- 
BCI) to interpret commands. During a series of 
training sessions, users practice imaginary move-
ments with hands, fingers and feet. Feedback is 
given, often through a cursor on a computer screen, 
to enable the user to consciously generate distinctive 
neuronal patterns. These patterns can then be used 
to control a computer, an exploratory robot or inter-
active games which enhance quality of life for 
locked-in users [108].

SMR-BCI can also be used for rehabilitation of 
organic functions. Typically, the BCI operator asks the 
user to imagine moving a hand or foot. For instance, 
they could focus on tapping their fingers or mentally 
practice more complex motions such as playing tennis 
[113,114]. One study has shown that active feedback in 
the form of a mind-controlled cursor accelerates reha-
bilitation of stroke victims. Though it utilizes an exter-
nal prosthesis, this form of therapy relies on neural 
plasticity, in this case, the brain’s capacity to re-route 
signals around damaged areas. Not all BCIs aim to 
replace nerves; in these BCI-based therapies, the combi-
nation of BCIs with assistive technologies stimulates 
organic regeneration [115].

4.7. Steady state visual evoked potentials

Steady state visual evoked potentials (SSVEP) are a class 
of visual evoked potentials (VEP). VEPs are modula-
tions that originate in the occipital lobe, and, similar to 

Figure 11. A visualization of the homunculus in a cross-sections 
of the motor and sensory cortex [License: Kenhub] .
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other evoked potentials, they exhibit characteristic 
waveforms named for polarity and latency. Because 
the amplitude of VEPs increases when users focus on 
a stimulus, they are relatively easy to induce and detect. 
VEPs can be classified as either transient (TVEP) or 
steady state (SSVEP) by their frequency. TVEPs are 
less than 6 Hz, while SSVEPs are greater than 6 Hz, 
and, as their name implies, occur continuously. SSVEPs 
are popular for BCI because they produce strong, loca-
lizable signals that peak at the frequency of the stimulus, 
and they are easy to induce from a variety of light 
sources [77,116].

SSVEPs result when neurons collectively entrain 
themselves to oscillating stimuli. This is usually presented 
as a set of lights or a checkerboard that flickers by alter-
nating its black and white squares [49]. By focusing on 
particular elements of the presentation, users can direct 
an EEG to perform an action. The occipital lobe responds 
quickly and consistently to visual phenomena, and 
SSVEP systems can be designed to work with little train-
ing on the part of the user or BCI transducer [1,117].

Another use of SSVEPs, albeit one which lies outside 
the range of BCI is medical diagnosis. In this configura-
tion, the sensors are used as a mental probe rather than 
a control interface. Flashing or patterned lights produce 
a characteristic P100 latency in the occipital lobe. Also 
known as the P1, this waveform appears 100 ms after the 
stimulus in healthy individuals. Deformation in the 
timing or amplitude of the P100 response indicates 
inflammation or other abnormalities in visual pathways 
[77].

4.8. Categorizing BCI signals

Numerous typologies of neural activity are found in BCI 
literature. Two categories are relevant to the P2731 
Functional Model: exogenous and endogenous [118]. 
Exogenous signals are physiological responses to sti-
muli. For instance, a researcher may incorporate 
a flashing light, image or sound into their system. 
Endogenous signals are produced in the course of the 
brain’s routine operation, e.g. self-regulation, or by con-
scious efforts on the part of the user, e.g. when a user 
imagines tapping their fingers [77,118]. Though not 
used here, the categories of exogenous and endogenous 
physiology are incorporated into the P2731 Glossary 
and Functional Model because we think they will be 
useful for categorizing unified data sets in the future. 
What remains is to categorize multimodal signals. To 
achieve complicated interactions, future BCI applica-
tions will require either signals from different regions 
of the brain or multimodal feature extraction from 
existing sensory arrays. New analytic techniques have 

begun enabling the latter approach [119], and they 
could enable users to control more than one parameter 
of an actuator simultaneously [82]. Examples of appli-
cations include inflecting speech with emotion or con-
trolling the force of grip when handling objects with 
a prosthetic limb.

5. Emerging BCI paradigms

Traditionally, the brain has been treated as a low- 
frequency electrical instrument with a characteristic 
range of 1–60 Hz. However, further studies have 
revealed this is due to technical limitations of EEG. 
In fact, the skull and surrounding tissue acts as 
a low-pass filter that effectively eliminates high- 
frequency waves. Growing bodies of evidence point 
to meaningful activity between 0.01 and 500 Hz. At 
the same time, coupled BCI instrumentation and 
new forms of analysis, many driven by machine 
learning, are discovering new purposes for the cano-
nical frequency bands [64], and with these new pur-
poses have come a host of new concepts for 
describing the operation of the brain: cross- 
frequency coupling, co-modulation, temporal fram-
ing and precession [120].

This section introduces a selection of outlying fre-
quency bands and interpretations of cerebral signaling 
which may grow in importance as new sensors and 
analytic tools emerge. If so, they may impact BCI design 
by enabling brain–machine interactions that are safer, 
more effective and more natural from the user 
perspective.

5.1. Slow cortical potentials

Slow cortical potentials (SCP) are low-frequency shifts 
in EEG ranging from 0.01 to 0.1 Hz that are distinct 
from well-known delta waves [121]. SCPs precede or 
accompany imagined movement or cognitive tasks, and, 
in keeping with their function, they are concentrated 
over the frontal motor regions [116,122]. Research 
points to a strong correlation between SCPs and 
a user’s behavior including attention, preparation and 
motivation [123]. Though SCPs are mainly produced in 
the cerebral cortex, they respond to connections with 
the thalamic attention system [122]. The thalamus is 
a cluster of neurons beneath the cerebral cortex that 
functions as a hub for sensory and motor signals, and 
it is thus closely tied to decisions and motivations.

SCPs are endogenous signals that control attention 
and, in a broader sense, inhibit impulses. Because they 
are amenable to individual self-control with BCI- 
assisted neurofeedback, they offer hope for both 
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therapeutic and applied BCI. Studies have shown that 
learning to generate SCPs via neurofeedback (SCP-NF) 
mitigates epilepsy in many patients who are otherwise 
resistant to treatment. Because SCPs regulate attention 
[122], SCP-NF could possibly assist individuals with 
ADHD. Some studies show promise, but others have 
been inconclusive. One intriguing study has shown that 
experienced meditators are able to control SCPs more 
effectively than untrained users, but the benefits of this 
ability have yet to be defined medically [121]. It could be 
that SCP-NF is effective only when combined with other 
therapeutic or environmental interventions [124,125].

SCPs have been used as an alternative to P300 evoked 
potentials for spelling systems, and some researchers 
believe they could be used as thought translation devices 
that control sounds, lights and wheelchairs [126]. As 
purely endogenous phenomena, SCPs have greater 
potential than other signals for paralyzed or ‘locked in’ 
users who may not be able to focus on exogenous 
stimuli such as visual images.

5.2. High frequency oscillations (HFOs)

Not long ago, all neural oscillations that exceeded 30 Hz 
were lumped together under the classification gamma. 
Exploration of high-speed oscillations were limited by tech-
nology, and research focused on them as biomarkers of 
epilepsy. However, epilepsy is one of the few conditions 
that permits the ethical insertion of electrodes into the 
human brain, and, in tandem with animal studies, studies 
of epileptic patients showed that healthy brains produce 
ultra-high oscillations, sometimes called fast gamma, that 
range from 110 to 160 Hz [127], ripple oscillations that 
range from 100 to 250 Hz [128], and other oscillations, as 
yet unnamed, that may reach 500 Hz.

While ethics and technology limits research into 
HFOs, it is now acknowledged that there are one or 
more frequency bands above gamma. To date they 
have been most frequently recorded in the occipital 
cortex, the hand motor area [129] and the hippocampus, 
an inner region of the temporal cortex that is crucial to 
memory. Since they often occur during periods of sleep 
associated with memory consolidation, some research-
ers associate HFOs with the formation of memory, 
a process which involves replaying incidents during 
non-REM sleep [130,131]. Normative values for HFOs 
have yet to be established, but researchers are working 
to establish common naming conventions, frequency 
ranges and functional descriptions [129,132]. These 
oscillations may one day have application in some of 
the advanced forms of BCI described below.

5.3. Cross-frequency coupling

One of the brain’s most tantalizing qualities is the quan-
tity of processing it performs within a compact, low- 
power structure. Many of the brain’s components serve 
multiple purposes, and an exciting area of research 
reveals how physiological structures may work in tan-
dem through cross-frequency coupling (CFC). 
Section 4.5 summarizes six frequency bands – delta 
through gamma – that have been identified with opera-
tional states of the brain. A growing body of research 
demonstrates that these canonical frequency bands do 
not operate in isolation. Instead, they interact in 
a structured manner to coordinate activities in different 
regions in the brain. For example, one study showed 
that the phase of theta oscillations modulates the power 
of fast gamma oscillations [133]. By enabling signals to 
perform multiple duties, CFC may contribute the 
brain’s astonishing efficiency

An hypothesis of growing interest is that cross- 
frequency coupling enables local and global processes 
to interact and thus supports the integration of distrib-
uted information [134]. Memory and learning would be 
examples of this integration which requires the reten-
tion of stimuli from a perceptual center to working 
memory [135]. Various forms of cross-frequency cou-
pling have been identified by experiments, including 
phase/amplitude, phase/phase, amplitude/amplitude, 
phase/frequency and phase/amplitude coupling [136]. 
This may explain both the architectural complexity 
and tremendous efficiency of the brain. Interactions 
among different neural clusters may occur so signals 
can cross-modulate to carry multiple messages, reinfor-
cement or even forms of analysis. Within this frame-
work, slower oscillations may provide temporal frames 
for faster ones, and the precession of one oscillation 
relative to another may carry information in its own 
right.

Phase-amplitude coupling (PAC) is the most com-
mon example of CFC. PAC ‘reflects the coupling of the 
phase of oscillations in specific frequency bands to the 
amplitude of oscillations in another frequency band’ 
[137]. Numerous studies have found correlations 
between theta and gamma oscillations [136,138,139]. 
Studies of humans, non-human primates and other 
mammals have found that the amplitude of gamma 
oscillations is phase-locked to theta oscillations while 
performing memory tasks. Efforts to correlate EEG and 
hemodynamic signals outside well-recognized fre-
quency bands revealed that the phases of infraslow 
fluctuations of less than 1 Hz (SCPs) synchronize with 
amplitudes of faster activity. Although the evidence is 
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not conclusive, this might represent one of the mechan-
isms the brain uses to coordinate overall or network- 
wide activities [140].

It is necessary to explain how the distributed topol-
ogy of the brain integrates activities across specialized 
regions [136], and cross-frequency coupling is an ele-
gant solution to the problem. In 2005 some researchers 
hypothesized that future EEG experiments will reveal an 
oscillatory hierarchy in the brain. They describe this as 
a ‘systematic dependence of higher frequency oscillatory 
amplitude on lower frequency phase’ [141]. Much 
research to date has found evidence of CFC, but it is 
worth bearing in mind precautionary arguments. 
Analytic techniques revealing new forms of CFC have 
improved [142], but there is still no accepted explana-
tion of the physiological mechanisms underlying the 
phenomena, and CFC remains a rich field of scientific 
investigation [143]. As the causes of CFC emerge, they 
would become integral to BCI design because they 
would enable more accurate multimodal control of 
actuators, for instance, allowing users to inflect synthe-
sized speech with emotional emphasis with less effort 
than current systems.

5.4. Bidirectional BCI

Electrodes have shrunk steadily since Galvani’s experi-
ments, and the microelectrodes of today can be used to 
induce action potentials in a single neuron. Depending 
on the location, direct electrical stimulation, also called 
modulation, results in sensations which feel more or less 
natural to users. Within BCI electrical stimulation can 
provide feedback to users that enhance performance. 
For instance, it can offer a sense of resistance that 
improves a user’s ability to grasp objects with a robotic 
arm. BCI that incorporates neural modulation is known 
as bidirectional BCI [144].

Before discussing direct stimulation of the central 
nervous system we should note that the brain is not 
the only region of the body that can be electrically 
modulated. Direct electrical stimulation can induce sen-
sations in peripheral nerves, and, by the same token, 
neural impulses can be detected in peripheral nerves 
located under the skin and within skeletal muscles. 
Electromyography (EMG) sensors are readily available 
for noninvasive detection of neuromuscular activity, 
and they have been used in the muscles of amputees 
and intact individuals to control external actuators such 
as prosthetic arms. Microelectrodes implanted in the 
same area can generate sensations in the phantom 
limb that has been replaced with a prosthesis [145] 
Moving closer to the brain, cochlear implants have sub-
stantially restored hearing [146], and retinal implants 

have imperfectly restored vision [147–149]. Restoring 
vision presents paradigmatic challenges in neuropros-
thetic design because it requires biocompatible materi-
als and high-density arrays to replace retinal fields 
[150,151]. For some applications, interfacing with the 
peripheral nervous system is safer, more convenient and 
less expensive than BCI.

There are situations where cerebral implants are the 
only viable option for interfacing with users. 
Neuromuscular interfaces still rely on the brain for 
intentional control, and the central nervous system of 
individuals with neurodegenerative diseases or spinal 
cord injury may lack access to peripheral nerves. 
Because of its complexity, the brain also offers more 
options for control than peripheral nerves [152], though 
reaction times lag behind natural somatosensory con-
trol [153].

Electrical modulation of the brain is accom-
plished through intracortical microstimulation 
(ICMS), a process which involves sending a low- 
amplitude electrical pulse through an implanted 
microelectrode. Minimum thresholds range from 1 
to 17 μA, but currents up to 500 μA are used in 
experimental situations. An ideal system would tar-
get single neurons, but the electrical fields generated 
by ICMS influence populations of neurons near the 
target as well as passing axons. Thus the ‘one neu-
ron’ precision attainable by recording has not been 
matched by stimulation technologies, and this may 
account for the ‘partially natural’ quality users 
ascribe to artificial sensations [154].

Successful bidirectional BCI mainly involves the 
somatosensory cortex. While any neuron in the 
brain can be artificially stimulated, users are obliv-
ious to stimulation in many regions, and the percep-
tual responses of specialized regions such as the 
occipital lobe, which produces visual patches called 
phosphenes [147], may not be helpful for applica-
tions that require tactile feedback. In contrast, the 
somatosensory homunculus illustrated in Figure 11 
enables researchers to generate sensations of pressure 
in distinct surfaces of the body including fingers. By 
intensifying the amplitude of a signal to a maximum 
of 100 μA, researchers generated a sensation of 
increasing pressure in users, a capacity which would 
prove useful in manipulating objects in the real 
world [155].

An example of this application is lifting an egg or 
another delicate object with a prosthetic arm. 
Positioning the arm can be achieved visually, but grasp-
ing without damage requires proprioception and tactile 
sensitivity to pressure. Users have traditionally used 
visual feedback to achieve such tasks, and some systems 
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have augmented natural vision with intelligent systems 
that compensate for the lack of proprioception and 
tactile capacity. Examples include an AR (Augmented 
Reality) display [156] and control modules that auto-
matically calibrate the movement of prostheses to user 
intentions [157]. Only recently has ICMS advanced to 
the point where it can be used as part of the user feed-
back loop, and the results from single user studies are 
promising. In one study, microstimulation of the soma-
tosensory cortex, graduated from 20 μA to 90 μA to 
simulate applied force, improved grasp force accuracy 
when the user gripped a virtual object [158]. In another 
study, a user achieved unprecedented performance as 
scored by the Action Research Arm Test (ARAT). This 
study involved a tetraplegic user moving a variety of 
objects with a robotic arm while the areas of his soma-
tosensory cortex corresponding to palm and fingers 
received ICMS [159].

Challenges remain for bidirectional BCI based on ICMS. 
Microelectrodes produce gross effects relative to the subtle 
dance of excitation, inhibition and oscillation that charac-
terizes natural signaling [160]. Perceptions are assembled 
from different processing streams, which makes it difficult 
to induce coherent phenomena. For instance, there is not 
a one-to-one correspondence between visual phenomena 
and visual processing areas. In an additional wrinkle, the 
relationship between saccades (the natural scanning move-
ments of the eyes) and the neural map of the retina in the 
occipital cortex seemingly shifts the position of phosphenes 
generated by ICMS [147]. Generating a biomimetic sensa-
tion requires an apparatus that coordinates multiple inputs 
into multiple regions of the brain to operate within shifting 
arrays of cycles, processes and processing hierarchies.

To maintain phenomenological stability, such an appa-
ratus may also need to adapt to changes in the brain’s neural 
environment. After it undergoes stimuli, the brain reconfi-
gures itself by setting new thresholds and synaptic associa-
tions. Under more radical conditions, such as lesions, brains 
may compensate by pressing new channels into service. The 
brain’s capacity to reconfigure itself, known as neural plas-
ticity, presents obstacles to long-term implants, and, aside 
from the possibility of damage discussed elsewhere, further 
research into the brain’s adaptive response to artificial sti-
mulation is needed. An alternative to biomimetic stimula-
tion is arbitrary stimulation which leads to new forms of 
learned behavior. Humans and other primates have learned 
to operate BCI applications by responding to artificial sti-
muli that have no correlation to natural phenomena. If the 
psychological impact is not negative, future users of BCI 
may simply adopt new sensory modalities [161].

To close, it should be noted that BCI can serve to 
rehabilitate as well as replace organic neural functions. 
In patients with brain damage, feedback from BCI 

systems encourages their brains to form new neural 
pathways to replace damaged ones [162–164]. In these 
cases, BCI is a temporary therapeutic tool that 
encourages regrowth of organic capacity.

5.5. Biohybrid systems

Neural plasticity describes the adaptive capacity of the 
brain. It is expressed physiologically in the brain’s capa-
city to revise its neurological order, and it is expressed 
psychologically in growing levels of skill and comfort 
that occur in adept BCI users. Physiological and psy-
chological plasticity underlies the potential of perma-
nent implants to enable a full range of BCI controlled 
applications [165].

Decades of experimentation demonstrate the capacity 
of engineered systems to integrate with the natural facul-
ties of humans and other animals. During BCI training 
sessions for operating prosthetic limbs and other actua-
tors, individuals usually start with motor imagery such as 
flexing a hand without actually doing so. Studies using 
motor imagery have shown that many individuals even-
tually skip images in favor of direct feedback from the 
actuator, e.g. the cursor on a computer screen [166]. The 
same principle applies to non-human primates and even 
rats who start with movement before learning that move-
ment is unnecessary to control external actuators [167]. 
One user of a prosthetic limb reported “that she was 
thinking about the goal of the action, such as ‘grab the 
block’, rather than issuing kinematic commands . . . sug-
gesting that the control was intuitive” [168]. In essence, 
the prosthesis becomes an appendage controlled by 
intention rather than protocols. Studies with EEG have 
shown that a single cortical area starts performing multi-
ple functions after BCI training [82]. This plasticity may 
be an avenue to the multimodal control necessary for 
complex tasks, but it is too early to generalize about the 
most effective design of BCI recording arrays. Whole 
brain studies that combine EEG with fMRI indicate that 
even simple tasks enlist dispersed processing centers that 
localized research may miss [169]. The sense of agency 
which makes BCI intuitive may depend on interaction 
with more regions than a successful experiment reports.

Materials science constitutes a primary vehicle for 
safe permanent implants that would enable mainstream 
use of BCI. Other sections of this paper discuss the 
physiological limitations of materials currently used in 
long term (or chronic) brain implants. Advances in 
noninvasive technologies such as EEG and transcranial 
magnetic stimulation (TMS) [170] may avoid problems 
involved with implantation, but, because surface sensors 
provide noisier signals, medical difficulties are offset to 
the transducer module where signals are interpreted. 
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Noninvasive sensor arrays may also present the issue of 
wearability. If head or body gear is required, cerebral 
implants may be more practical for long-term 
applications.

As discussed earlier, ethical considerations have lim-
ited experimentation with implants. However, these 
considerations are being mitigated by the use of 
in vitro preparations of live neurons grown on an extra-
cellular matrix and sustained by a fluid culture that 
provides oxygen, nutrients, antibiotics and growth fac-
tors. Experiments prove that these cerebral organoids 
self-organize into networks which behave similarly to 
cerebral tissues in an organism [165]. Therapeutic inter-
ventions continue to improve and supply a growing 
basis of evidence for the efficacy of BCI. A recent 
study with a single ALS patient demonstrated that an 
ECoG array remained stable for 3 years. The user’s 
satisfaction with the device increased during the test 
period – ‘without [it] I would be without words’ – and 
the subdural implant caused no medical issues [171]. It 
is clear that permanent implants could circumvent lim-
itations imposed by a variety of neurophysiological ill-
nesses, and they would also support valuable industrial, 
military and commercial applications [3]. While con-
siderable room for improvement remains, signal proces-
sing modules and control interfaces already have the 
capacity for high-stakes applications in medicine. 
Improvements in artificial intelligence (AI) and compu-
ter hardware will reduce the cost of accurately interpret-
ing neural activity, and they will do the same for the 
actuators and modulators required for intuitive user 
control. What remains is the development of biohybrid 
systems that enable long-term or permanent use of 
implanted BCI hardware.

Biohybrid systems arise from the combination of BCI 
with biocompatible materials and techniques for inte-
grating them with the nervous system. We have already 
discussed neurotrophic factors that induce nerves to 
grow into electrodes. These early experiments were lim-
ited by the use of materials which either corrode or 
cause scarring that renders them useless because the 
brain is an adverse environment for traditional electro-
nics [172]. Implants which resist corrosion face other 
issues. When the brain senses a foreign object, glial cells 
form a thick layer to isolate it from neurons. This 
immune response may result from surgical damage, 
but it also arises from the brain’s rejection of implant 
materials. Silicon, carbon and tungsten evoke glial cell 
formation and neural depletion that interfere with 
probe interfaces [173]. Initially, it was thought that 
coatings may stabilize implants [174] while flexible 
probes with polymer substrates would cause less 
damage and better conform to the brain’s convolutions 

[175,176]. Ever smaller probes approach the nanometer 
scale of the smallest neural structures. But these innova-
tions mitigate rather than eliminate damage caused by 
implants [9,177]. A growing body of work concludes 
that current generations of invasive probes suffer from 
a ‘fundamental structural, mechanical and topological 
difference’ between implants and cerebral tissues. As 
measured by Young’s modulus, a way of measuring 
the tensile strength of a material, the brain is extraordi-
narily soft: even flexible probes are still 100,000 to 
1,000,000 times more rigid than cerebral tissue [178]. 
Anything more rigid than the brain exerts shearing 
pressure that damages cerebral tissue and provokes an 
immune response.

Mechanics alone do not describe the profound mis-
match with the materials commonly used in implants. 
Cerebral tissues resemble a hydrogel in their ability to 
diffuse solutes such as ions, oxygen and nutrients, and 
implants need to match this capacity, or they will dis-
rupt the finely tuned three-dimensional functioning of 
the brain [177]. Entirely new technical paradigms are 
required to achieve biocompatibility. One area of pro-
gress is mesh electronics.

Mesh electronics operate on the premise that non- 
living neural probes must ‘look and behave’ like neural 
tissue [179]. A neural mesh overlays a porous 3D sub-
strate with nanowire field-effect transistor (FET) detec-
tors that are smaller than cells. The resulting array 
overcomes many of the deficiencies of previous genera-
tions of neural probes. They can be rolled into a cylinder 
and implanted through a syringe in a minimally 
destructive procedure. After departing the syringe, 
they unfurl to accurately target individual cells. Mesh 
architecture gives the array the behavior of a colloid in 
solution, and after implantation neurites grow through 
the porous netted array which also allows diffusion of 
nutrients and other solutes. Sensors and modulators 
(stimulating electrodes) can be incorporated into 
a single array, and the scale of functional probes enables 
the formation of artificial synapses that enable integra-
tion with natural tissue [178].

So far, we have discussed the use of BCI as a replacement 
for the peripheral nervous system, that is, as an interface 
between the brain and external actuators. Biohybrid sys-
tems could also enable the implantation of cerebral pros-
theses. Researchers have proposed that a combination of 
neural recording and stimulating arrays could bypass 
damaged areas of the brain. For instance, if a section of 
the visual stream in the parietal cortex is damaged, a BCI 
bypass could enable visual information to be conducted 
from the occipital cortex to the frontal cortex to enable 
planning for movement [180]. Technological intervention 
is not limited to perceptual and motor functions. 
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Experiments combining theta-burst transcranial magnetic 
stimulation (TBS) of the hippocampus with fMRI have 
shown it is possible to enhance memory [65], and the 
convergence of biological neural networks (BNN) with 
artificial neural networks (ANN), could enable more ambi-
tious systems for ‘injecting information’ into the cerebral 
cortex [165]. In principle, BCI applications could provide 
cognitive as well as sensory and physical prostheses.

Progress in biohybrid systems which combine cultured 
neural tissue with artificial neural networks is advancing 
toward a form of interfacing which enables organic tis-
sues to integrate permanently with tissue-like bidirec-
tional implants. With progress in safety, cost and 
functionality, biohybrid BCI systems could become the 
basis for new and widely available categories of therapeu-
tic interventions. And, if society allows, they may extend 
human capabilities well beyond our natural endowment.

6. Physiological impediments to signal 
acquisition

Numerous conditions impede the detection of signals in 
the brain. Impediments can be divided into two cate-
gories: intrinsic, that is, originating in the human user, 
and extrinsic, that is, artifacts that originate in the BCI 
apparatus or its environment [181]. While some impe-
diments have particular characteristics, BCI researchers 
face a primary problem: in the brain, signals of interest 
are often far weaker than competing inputs. This section 
will review the physiological sources of electrical signals 
that interfere with study of the brain.

6.1. Electromyographic activity (EMG)

Action potentials are not limited to neurons. Muscle 
cells generate action potentials to contract, and, when 
multitudes act synchronously, their aggregate contrac-
tion produces bodily movement. Muscles in the face and 
neck are relatively powerful compared to cerebral neu-
rons. They are often physically closer to brain sensors, 
and, without the insulation of the skull and the brain’s 
protective membranes, they easily interfere with detec-
tion of cortical potentials [182].

6.2. Electrooculographic activity (EOG)

Structural features of the eye, namely ionic differ-
ences between its components, create a powerful 
dipole near EEG sensors [183]. Movements of the 
eye are a major source of noise in EEG because 
electrical fields produced by ocular movement resem-
ble the frequency of cerebral waveforms but have 

greater amplitude [181]. In EEG, a primary use of 
reference electrodes is to filter interference from 
EMG and EOG.

6.3. Skin potential artifacts (applies to EEG)

Electrodermal activity, movement and perspiration 
can create skin potentials that resemble SCPs [183]. 
Before placing electrodes, skin should be carefully 
cleaned to provide the lowest possible impedance 
between the sensor and the subdermal signals used 
to control BCI applications [184]. EEG sensors can 
be either wet or dry. As the name implies, dry 
electrodes are placed on a user’s scalp without 
a coating. They are more convenient to set up and 
more comfortable for users, but they have lower 
conductivity than wet electrodes. Coating electrodes 
with a saline solution or conductive gel has been 
considered critical to achieving accurate results, but 
it requires discomforting skin abrasion, skilled tech-
nicians and periodic renewals of the conductive 
substance. A recent study has concluded that con-
temporary dry electrodes can achieve comparable 
results to wet electrodes [185], and some organic 
dry electrodes outperform traditional sensors in 
accuracy, durability and user comfort. It is likely 
that progress in skin probe fabrication will con-
tinue, and the need for invasive probes could 
lower with each phase of improvement [186]

6.4. Signal composition (applies to EEG)

Because tissue acts as a low-pass filter, scalp-mounted 
electrodes are most sensitive to neuronal activity in 
a relatively low range of frequencies. This corresponds 
to the well-documented oscillations occurring between 
1 Hz and 90 Hz [6].

6.5. Surgical damage

Invasive techniques involve opening the skull and 
implanting electrodes at depths that start at the 
brain’s surface and proceed deeper. Insertion of 
sensors risks hemorrhage and damaging neurons 
and the tissues which support and nourish them. 
There are well-established techniques for avoiding 
and mitigating the immediate effects of surgical 
wounds [187,188]. However, microscopic damage 
to the blood–brain barrier (BBB) often persists, 
and the resulting accumulation of neurotoxins 
reduces the efficacy of electrodes while posing risks 
to the user [7].
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6.6. Biological tissue responses

As with other tissues, the brain responds to medical 
implants through inflammation and other defensive 
processes called the foreign body response (FBR). 
The chronic damage to the BBB described above is 
an example of a FBR, and other FBRs isolate, cor-
rode or reduce the sensitivity of electrodes while 
simultaneously damaging cerebral tissues. Our 
understanding of how the brain responds to chronic 
implants is far from complete, and the reaction of 
cerebral tissues to foreign substances is an obstacle to 
delivering the promise of BCI. Problems range from 
structural changes, e.g. the formation of protective 
layers such as glial scar tissue around electrodes 
[172], to chemical interactions with bodily fluids 
which release neurotoxins [189,190].

6.7. Heat generation

Cerebral tissue starts to burn at 38°C [51], so the gen-
eration and dissipation of heat is an important consid-
eration in the design of implantable BCI systems.

6.8. Movement

The effects of movement vary widely among BCI plat-
forms. EEG and fNIRS allow some movement on the 
part of users. Implants are limited only by the sturdiness 
of their external connections and the inevitable expo-
sure of the brain. Facial movements present special 
problems to EEG because electrical signals produced 
by muscles are far stronger than mental activity. 
Movement during fMRI and MEG degrades the quality 
of data which must be precisely registered, or assigned 
to the same position in the brain, to extract meaningful 
measurements from epochs.

6.9. Fatigue & aging

In this paper, we are treating the brain as a component 
of an engineered system – the P2731 Functional 
Model – and engineering requires consistency. 
Consistent states are difficult to achieve because brains 
differ among individuals. However, individual perfor-
mance also differs between sessions and even within 
a single session [191]. Like muscles, brains fatigue, and 
long sessions or challenging tasks may cause a user’s 
performance to decline [192,193]. To develop main-
stream applications, researchers need to allow distrac-
tions that simulate real-world conditions [194]. As 
discussed above, rapid mental fatigue is especially com-
mon in individuals with ALS. The plasticity of the brain 

also affects performance over a longer term: connections 
among neurons acclimate with practice, or as discussed 
in Section 5.4, they may reorganize in response to elec-
trical stimuli.

Aging presents different challenges. Structures such 
as the dura mater, the protective layer surrounding the 
brain, thickens with age. This increases the force 
required to insert electrodes through it [195], and it 
raises the question whether its electrical properties 
change. Finally, mental performance declines with age. 
While behavioral observations correlate to speed, at the 
neurological level, the phenomena of aging are related 
to more complex causes than a decline in the linear rate 
of stimulus response [196,197].

Differences among and even within individuals 
impact other elements of the BCI system, notably the 
classifier module which is trained to recognize signals. 
As discussed in the following section, even methods 
with large and well-established datasets such as the 
P300 speller require individual calibration, a condition 
which hampers the deployment of BCI applications 
outside of laboratories.

6.10. BCI illiteracy

Individual variation affects both the acquisition of data 
and active efforts by users to control actuators via BCI. 
As we have emphasized, the brains of normally func-
tioning people are not identical, and, in the absence of 
scans or surgery, the position of anatomical features can 
only be estimated by researchers. Attention, imagina-
tion and other mental activities that produce detectable 
responses are products of skill, strength and endurance 
[198]. As with athletics, some individuals excel at BCI 
applications while a sizable population are unable to 
produce acceptable results. The latter condition is 
often called ‘BCI illiteracy’ [66,109]. Unfortunately, 
some of the populations who may benefit the most 
from BCI, e.g. individuals with ALS, may have impair-
ments which hinder them from engaging with the tech-
nology. There are efforts to predict BCI performance on 
the basis of relevant physiological indicators, e.g. the 
resting state of SMRs, and, if validated by further experi-
ments, they may improve training regimens or, at the 
least, help avoid costly and uncomfortable failures [193]

6.11. P300 latency jitter

In engineering, jitter is uncontrolled variability in the 
time window of a signal’s arrival. Because the P300 is the 
foundation of many BCI control systems, individuals 
who exhibit jitter, that is, variations in the timing of 
P300 responses, may be unable to take advantage of 
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neuroprostheses. Latency jitter occurs in neurotypical 
individuals, and it has been associated with a broad 
range of conditions that includes schizophrenia, trauma 
to the brain and aging [196,199]. Unfortunately, evi-
dence points to a class of individuals who stand to 
benefit most from P300 spellers and other actuators: 
people diagnosed with ALS or who are in a vegetative 
or minimally conscious state. Research continues into 
the causes of P300 latency jitter and the classes of people 
at risk, and further insight may inform the design of 
future systems [199,200]. A promising method is latency 
estimation. Researchers augmented the signal interpre-
tation stage with an additional layer of classification, 
and, although problems remained, they were able to 
improve the results of individuals with marginal BCI 
performance [191,201].

7. Conclusions

Repeatability is the bedrock of science, and BCI-based 
research has been fortunate in this regard. From incep-
tion EEG revealed phenomena, namely the alpha to 
gamma neural oscillations, which are universal in 
healthy brains. Furthermore, analogous neural oscilla-
tions occur across species. Experiments on primates and 
other mammals reveal a continuum of evolutionary 
development, and they guide insights into the neuro-
physiology of humans [202,203]. Although the beha-
vioral correlates of early discoveries are now 
recognized as simplifications, they provided a solid 
foundation for scientific advance along with the confi-
dence that investments in research would produce pro-
gress [204].

Advances in methods and key technologies are accel-
erating progress in BCI. Studies that combine platforms, 
e.g. EEG and fMRI, are revealing how signals propagate 
through the brain, and, by creating more accurate mod-
els, they offer ways to improve the design of compact 
systems [109]. The combination of biocompatible mate-
rials, nano-components, AI-driven analysis and biohy-
brid technologies are overcoming physiological 
impediments to implementation of BCI in non- 
medical settings. While still on the horizon, these factors 
are bringing long-term or even permanent electrophy-
siological implants closer to reality, and strong argu-
ments for the superiority of permanent implants have 
been made [5,6]. At the same time, improvements in 
noninvasive techniques may obviate the need for sur-
gery in some scenarios. Some researchers are already 
considering the security, privacy and governance issues 
raised by an ‘Internet of Neurons’ that may emerge from 
ubiquitous BCI [205].

Another barrier to the progress of BCI is the absence 
of shared terminology and data formats. This paper 
covers the terms that inform the physiology module of 
the IEEE P2731 working group’s functional model, and 
it will be reflected in the standard glossary the group 
plans to release in late 2021. Improvements in BCI, 
notably the spatiotemporal resolution of data, ensures 
that BCI-based science will be a dynamic field, and it 
would not be surprising if new paradigms of mental 
operation emerge in the near future. Given the pace of 
progress in BCI, it is vital to reach consensus on how to 
document data and, indeed, how to discuss it across 
disciplines.
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