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ABSTRACT
The Eighth International Brain–Computer Interface (BCI) Meeting was held June 7–9, 2021 in 
a virtual format. The conference continued the BCI Meeting series’ interactive nature with 21 
workshops covering the breadth of topics in BCI (also called brain–machine interface) research. 
Some workshops provided detailed examinations of methods, hardware, or processes. Others 
focused on BCI applications or user groups. Several workshops continued consensus building 
efforts designed to create BCI standards and improve comparisons between studies and the 
potential for meta-analysis and large multi-site clinical trials. Ethical and translational considera-
tions were the primary topic for some workshops or an important secondary consideration for 
others. The range of BCI applications continues to expand, with more workshops focusing on 
approaches that can extend beyond the needs of those with physical impairments. This paper 
summarizes each workshop, provides background information and references for further study, 
summarizes discussions, and describes the resulting conclusion, challenges, or initiatives.
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1. Introduction

The field of brain–computer interface (BCI) research 
has many names, most historically originating from 
related research domains with converging objectives. 
The terms BCI and brain–machine interface (BMI) are 
quite common and the term neuroprosthetic also 
applies. In general, a BCI is a device that interprets 
information directly from the brain to provide 

a means of interacting with technology. Brain activity 
can be measured using either implanted electrodes or 
external sensors. The technology can be operated 
through a variety of methods, including a direct con-
nection between the brain and the effector (e.g. to oper-
ate a prosthetic), or a secondary interface such as 
a keyboard display (e.g. for communication). Recent 
work has also used electrical stimulation of the brain 
itself to ‘close the loop’ and provide sensory feedback 
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about the state of the technology. The defining feature of 
a BCI is that the brain activity itself is interpreted, the 
information to control a device is not derived from 
activity propagated through peripheral nerves. Many 
BCIs were initially developed for use by people with 
physical impairments, but the current broad range of 
applications also targets other neurological and cogni-
tive impairments, abled-bodied users, and even oppor-
tunities for human enhancement. The 8th International 
Brain–Computer Interface Meeting provided a venue 
for exploration of the breadth of BCI topics and this 
paper is designed to provide a window into the work-
shops that occurred at that Meeting.

1.1. The BCI meeting series

The 8th International Brain–Computer Interface 
Meeting was originally scheduled to be held in 2020. 
However, due to travel restrictions and health concerns 
during the global pandemic, the 2020 in-person meeting 
was postponed to June 7–9th, 2021 and ultimately con-
verted to a virtual meeting format. The goal of the BCI 
Meeting Series (1999 [1] 2002 [2], 2005 [3], 2010 [4], 
2013 [5,6], 2016 [7–9], and 2018 [10,11]) is to create 
a single venue for people representing all the diverse 
backgrounds, disciplines, expertise, and application 
areas necessary for successful and practical BCI research 
and development.

The Eighth International Brain–Computer 
Interface (BCI) Meeting was hosted in the 
Pheedloop platform (Toronto, Ontario, Canada), 
which managed individual sessions using the Zoom 
platform (San Jose, California, USA). Poster sessions 
and social events were held on the GatherTown plat-
form (gather.town). This Meeting was attended by 
395 delegates from 35 countries, a significant growth 
from the 50 delegates in 1999 [1], although not quite 
as many as the previous in-person meeting in 2018. 
Respondents to the 2021 BCI Meeting evaluation 
survey identified themselves as 40% students, 13% 
postdocs, 25% faculty members, and 22% other. 
The BCI Meeting Series is intentionally designed to 
promote interaction between different groups and 
different career stages and has advanced the careers 
of numerous BCI researchers. Many activities are 
designed to provide educational content and net-
working opportunities for students and early-career 
investigators. The 2021 BCI Meeting had a theme of 
‘BCIs: The Next Frontier’. The workshops of the BCI 
Meeting Series provide examples of how BCIs are 
advancing the frontiers of science and details on 
both how close we are to realizing new applications 
and the challenges that remain to be overcome. The 

workshop summaries presented here serve as an 
overview of the current status of BCI research and 
development and present a roadmap to the next 
steps needed to advance that frontier.

1.2. Organization of workshop summaries

Workshops for the BCI Meetings are proposed by mem-
bers of the BCI community, then evaluated and curated 
by the Program Committee. For the virtual BCI Meeting 
of 2021, the workshops were assigned to four different 
schedule slots with three to four workshops running 
concurrently. In addition, six of the workshops volun-
teered to run as part of a five-month preliminary series 
of ‘BCI Thursdays’. These workshops were the same 
length and format as the workshops that occurred dur-
ing the Meeting but did not overlap with other BCI 
Society events and had a separate registration structure. 
However, they retained the strong emphasis on attendee 
participation that is central to workshops of the BCI 
Meeting series. The BCI Thursday series also included 
free events designed to provide technical background 
for students on cutting-edge topics in BCI research.

The workshop summaries presented here are divided 
into three themes and ordered to provide a progression 
of topics. They can be read sequentially as an overview 
of the field or separately to provide details on a topic of 
interest. However, acronyms are only defined on their 
first use. For each summary, we report the primary 
organizer, who is also a co-author of this paper, and 
list all additional presenters. Each summary is designed 
to introduce the workshop topic, the latest develop-
ments or central ideas presented in the workshop, and 
the topics of discussion and eventual conclusions. Of 
course, nothing will substitute for the actual experience 
of being part of an interactive workshop, even 
a workshop in a virtual platform. However, the summa-
ries are intended to at least provide an overview and 
pointers to the information that workshop attendance 
would have provided. Further, the summaries provide 
the key points, conclusions, or consensus opinions that 
resulted from the workshop discussions and may 
include opportunities to participate in ongoing discus-
sions or collaborations.

Each workshop focused on a specific topic area, yet 
these topics overlap and complement each other, so that 
the summaries sometimes create a mosaic examining 
related ideas from different angles and at other times 
build on each other. For example, the workshops 
‘Toward an international consensus on user characteri-
zation and BCI outcomes in settings of daily living’ and 
‘On the need of good practices and standards for 
Benchmarking Brain–Machine Interfaces’ examine 

2 J. E. HUGGINS ET AL.



different aspects of standards. Similarly, BCI use for 
children and people with congenital disabilities are 
examined in the pair of workshops ‘The design of effec-
tive BCIs for children’ and ‘Non-invasive BCIs for people 
with cerebral palsy’.

Three general themes provide the structure for this 
article, although many alternative organizations could 
be proposed. The themes are independent of the time 
slot in which the workshop occurred. The first theme is 
Tools and Methods and contains workshops providing 
detailed examination of a particular hardware, software, 
or analysis method. The second theme is BCIs for 
Specific Populations or Applications and is less con-
cerned with hardware and software than with the out-
come produced or the common considerations for 
working with a specific group. The final theme is 
Expanding BCI Usability and Availability. The work-
shops in this theme focus on big picture topics such as 
standards, translational issues, and ethics as well as the 
expansion of BCIs into the broad consumer market 
through applications such as entertainment and 
human enhancement.

The trajectory of these three themes, and the work-
shop summaries presented here, creates a progression 
from foundational topics to translational efforts for 
standardized clinical applications and BCIs for the 
population at large. Together these workshops show 
the diversity of BCI applications and intended users 
and the complexity of the issues that must be solved to 
make BCIs into useful tools for the many intended user 
groups.

2. Tools and methods

2.1. Focal bi-directional brain computer interfacing 
with concentric electrode technology

Organizer: Charles Anderson (Colorado State 
University)

Additional Presenters: Walter Besio (University of 
Rhode Island and CREMedical), Barry Oken (Oregon 
Health & Science University), Myles McLaughlin (KU 
Leuven)

This workshop focused on EEG BCI experiments and 
stimulation studies using tripolar concentric-ring elec-
trodes (TCREs) and the advantages of this technology 
over conventional disc electrodes. Compared to conven-
tional disc electrodes, TCREs have significantly better 
spatial resolution and signal-to-noise ratio [12–14]. 
TCREs increase signal bandwidth for high-frequency 
signals useful for localizing epileptic brain regions and 
possibly imagined movements [15,16]. Imagined move-
ment BCI improved significantly with TCREs [17,18]. 

TCREs’ increased spatial resolution and signal-to-noise 
ratio may enable discrimination between finger move-
ments, currently only possible with implanted electro-
des. Experiments involving real and imagined finger 
movements found that EEG from TCREs produced sig-
nificantly better discrimination among movements of 
individual fingers (about 70% correct classification) 
than conventional disc electrodes (about 40%) [19].

TCREs are safe for stimulation [20,21] and can be 
used for seizure control [22–26]. The stimulation can 
block epileptogenesis [27] and alter neurotransmitters 
to increase the effectiveness of anti-seizure drugs [28– 
30]. Stimulation experiments are underway to deter-
mine if transcranial focal stimulation via concentric 
ring electrodes is effective for modulating human 
brains.

Pain is a common medical problem but difficult to 
objectify as a personal experience of a sensation. Using 
TCREs both to selectively stimulate pain fibers and to 
record pain-related evoked potentials (PREPs) is one 
method of objectifying pain sensation [31–37]. Custom- 
made concentric stimulating electrodes can selectively 
stimulate pain afferents where conventional electrical 
stimulation with mono- or bi-polar stimulating electro-
des failed. TCREs delivered paired electrical stimula-
tions to the dorsal non-dominant hand. PREPs were 
recorded at Cz referenced to ear. For control partici-
pants, average PREP N1-P2 amplitude was significantly 
diminished by electroacupuncture. In another experi-
ment control participants showed the expected habitua-
tion of PREP N1-P2 amplitude over time, but those with 
chronic low back pain showed an increase in PREP 
amplitude, presumably a physiological marker of central 
sensitization, the increased responsiveness to sensory 
information such as nociception.

TCREs on the skull under the skin may be an effec-
tive middle ground between implanted stimulation elec-
trodes and the non-invasive but less effective 
transcranial stimulation. TCREs provide higher magni-
tude stimulation in gray and white matter than tran-
scranial stimulation. Focused and unfocused 
stimulation on neurons have been studied in Macaque. 
Increased spatial precision with TCREs was demon-
strated when stimulating rat motor cortex area for rear 
limb movement. Conventional electrodes produced 
movement in both contralateral and ipsilateral limbs, 
but TCREs only produced contralateral limb move-
ment [38].

Discussion covered practical considerations and 
design variations, including different numbers of rings 
and different spacing. TCREs sizes include 10 mm, 
6 mm, 4 mm, and even 3.5 mm. TCREs use 10–20 
paste, but work on using gels and possible dry electrode 
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designs are being considered. Caps to hold TCREs were 
described, but need work for the smallest TCREs. Two 
disadvantages of TCREs are the need for a custom pre- 
amplifier from CREMedical and for precise scalp place-
ment because higher spatial precision means steep 
attenuation over short distances. Laplacian transforms 
can be applied to EEG recorded from conventional disc 
electrodes, but 92 disc electrodes are required to obtain 
results similar to that provided by one TCRE. Publicly 
available sample data recorded from TCREs can be 
found at https://www.cs.colostate.edu/~anderson/res/ 
eeg/tripolar/tripolar.zip.

2.2. Invasive brain computer interface technology: 
open loop and closed loop decoding applications

Organizer: Christoph Kapeller (g.tec medical engineer-
ing GmbH, Austria)

Additional Presenters: Kyousuke Kamada, MD, PhD, 
(Megumino Hospital, Japan); Aysegul Gunduz, PhD, 
(University of Florida, USA); Peter Brunner, PhD, 
(Washington School of Medicine, St. Louis, USA); Kai 
Miller, MD, PhD (Mayo Clinic Rochester, 
Minnesota, USA).

The workshop discussed state-of-the art BCI applica-
tions using open-loop and closed-loop decoding and 
neuromodulation. Implementation of these experimen-
tal setups in existing BCI platforms was also discussed.

Invasive electroencephalographic (iEEG) signals, 
such as electrocorticography (ECoG) or stereo EEG, 
contain information with high spatial and temporal 
resolution [39]. Several invasive BCIs have been realized 
over the past two decades. Closed-loop invasive BCIs 
have been used for control of prosthetic limbs [40] as 
well as avatars or cursors [41,42]. Open-loop invasive 
BCIs have been used for decoding of speech [43–46], 
movements [47,48] and vision [49,50]. Establishing use-
ful invasive BCI applications requires interdisciplinary 
efforts for the development of sensors and machine 
learning algorithms, with specialized efforts to make 
the resulting technology practical for a medical envir-
onment and matched to each individual’s clinical indi-
cations. Further, the risk of implanting sensors has to be 
surpassed by the benefit that the BCI provides to meet 
the specific need of each patient [51].

Recent developments showed a transition from 
proof-of-concept demonstrations to clinical applica-
tions, including open-loop decoding for brain mapping 
[52–54] and BCI implants [55]. Such implants can pro-
vide ALS patients with a powerful BCI [42] and will be 
further investigated over the next years. The concept of 
open-loop electrical brain stimulation for neuromodu-
lation has been widely used in presurgical brain 

mapping. Stimulating the somatosensory cortex can 
induce sensation in individual fingers [56], while stimu-
lating the visual cortex causes illusory percepts like 
appearing faces or moving rainbows [57]. Open-loop 
deep brain stimulation (DBS) has been utilized for more 
than 40 years to manage tremor [58]. More recently, 
DBS has been used to treat Parkinson’s disease, Tourette 
syndrome, dystonia, and depression [59]. Closed-loop 
stimulation based on iEEG signals improves the battery 
lifetime during the treatment of Tourette syndrome [60] 
and essential tremor [61]. Most of the aforementioned 
studies required the integration of sensors and ampli-
fiers into signal processing platforms that are capable of 
real-time processing and synchronized with the 
patient’s condition and/or stimulus presentation. 
Example BCI platforms in the workshop were BCI2000 
[62] and the rapid prototyping platform g.HIsys in 
MATLAB/Simulink [63].

2.3. Riemannian geometry methods for EEG 
preprocessing, analysis and classification

Organizer: Louis Korczowski (Siopi.ai)
Additional Presenters: Marco Congedo (GIPSA-lab, 

CNRS, Université Grenoble- Alpes), Florian Yger 
(LAMSADE, CNRS, Univ. Paris-Dauphine, PSL 
Research Univ.), Sylvain Chevallier (LISV – UVSQ – 
Univ. Paris-Saclay), Pierre Clisson (Timeflux Research 
Group), Quentin Barthélemy (Foxstream)

Riemannian Geometry (RG) is a subject of growing 
interest within the BCI community. Machine learning 
methods based on RG have demonstrated robustness, 
accuracy, and transfer learning capabilities for the clas-
sification of motor imagery [64], ERPs [65], SSVEPs 
[66], sleep stages [67], and other mental states [68]. 
This workshop provided an overview of RG, demon-
strating its practical use for signal pre-processing, data 
analysis, mental state classification, and regression.

RG was first applied to BCI in 2010 [64]. Key articles 
highlighting different applications of RG include multi- 
class classification (e.g. minimum distance-to-mean 
(MDM) classifier) [69], transfer learning (e.g. 
Riemannian Procrustes Analysis) [70,71], the first 
online BCI system using it (e.g. Brain Invaders) 
[65,72], and milestone-like performance of RG methods 
in international competitions [73,74]. Intrinsic proper-
ties of RG methods were discussed to explain their 
performances (e.g. simple parametrization of models, 
robustness induced by affine-invariant metrics) but 
also some drawbacks and how they can be managed 
(e.g. sensitivity to rank deficiency at high dimensional-
ity) [75,76]. Interestingly, RG can be used in combina-
tion with other effective methods such as common- 
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spatial pattern and/or deep learning to outperform 
methods using Euclidean space alone, e.g. by projecting 
data in a tangent space [74].

The ecosystem of open-source libraries (that was 
scattered and scarce before) is now mature enough to 
improve several steps of the BCI system. For example, 
Riemannian methods outperforms Euclidean methods 
in accuracy and simplicity in use cases such as automatic 
artifact detection (e.g. Riemannian potato) [77,78] or 
ERP classification (e.g. MDM with super covariance 
matrix). These performances are tested using the fair 
benchmarking approach [79] and are easy to replicate in 
online BCI thanks to libraries such as Timeflux [80].

Despite its performance advantages, publication data 
from https://www.dimensions.ai/ show that articles 
mentioning new contribution of ‘Riemannian 
Geometry’ applied to BCI has remained in the range of 
7 to 21 per year in the period 2016–2020 (mean cita-
tions: 27.71). For comparison, mention of ‘common- 
spatial patterns’ associated with BCI increased from 71 
to 119 articles per year (mean citations: 20.75) and ‘deep 
learning’ from 15 to 179 articles per year (mean cita-
tions: 11.67) in the same period.

We argue that the gap between the observed perfor-
mance of RG applied to BCI and the proposal number of 
contributions in this field may be attributed to some 
combination of a perceived lack of easily accessible 
resources to make RG widely available to BCI research 
(e.g. 65.7% of respondents to the workshop question-
naire had never used RG before) and the lack of repro-
ducible tools for benchmarking different methods while 
taking into consideration datasets heterogeneity (dis-
cussed at the previous BCI meeting workshop [81]).

This workshop was created to address these issues by 
increasing awareness of available resources for RG and 
encourage benchmarking with tools such as MOABB on 
a larger scale of datasets [79]. We encourage everyone to 
report benchmarking results. Further, we invite everyone 
to join us by using the open-source RG tools, and by 
contributing to the improvement of these tools either by 
providing feedback, or contributing to the open-source 
project pyriemann. All the workshop resources are acces-
sible, including slides, code tutorial, online demo, exhaus-
tive workshop Q&A, and linked data: https://github.com/ 
lkorczowski/BCI-2021-Riemannian-Geometry-workshop.

2.4. Open-source python tools for BCIs

Organizer: Pierre Clisson (Timeflux Research Group)
Additional Presenters: Raphaëlle Bertrand-Lalo 

(Timeflux Research Group), Sylvain Chevallier (LISV, 
Université Paris-Saclay), Marco Congedo (GIPSA-lab, 
CNRS, Université Grenoble-Alpes)

Python started as a general-purpose programming 
language but has evolved into a tool of choice for the 
scientific community, quickly overtaking specialized 
languages such as R and MATLAB [82]. Several factors 
account for its success: Python is easy to learn, has 
a strong community, and benefits from a rich and effi-
cient data science ecosystem.

This workshop had a two-fold objective: give an over-
view of the Python BCI landscape and provide hands-on 
instructions on a few chosen open-source tools.

As a foundation for the focus on practical BCI, we 
first reviewed the main BCI paradigms and the typical 
workflow of a BCI pipeline. We discussed common 
challenges for BCI applications: the need for precise 
synchronization of the EEG signal and the stimuli, the 
difficulty of obtaining good quality signals in real-life 
conditions, and the challenges of calibration.

Riemannian geometry (RG) for EEG-based BCI 
[65,83] has produced state-of-the-art results in interna-
tional competitions [76]. Machine-learning algorithms 
based on RG offer many advantages. They are compu-
tationally efficient and thus suitable for online applica-
tions. They usually converge to optimal results relatively 
quickly, reducing calibration duration (ongoing studies 
on transfer learning are attempting to remove this phase 
completely [70,84]). Finally, they do not depend on the 
BCI paradigm and work equally well for ERP, SSVEP, 
and motor imagery tasks.

PyRiemann [85] is an actively maintained Python 
package for manipulating covariance matrices. It imple-
ments multiple data transformation techniques and 
classification methods. Workshop participants were 
guided through a Python notebook and instructed on 
using this library with concrete examples.

The RG framework includes multiple signal classifi-
cation strategies and BCI researchers use many other 
algorithms, such as Logistic Regression, Regulated LDA, 
Support Vector Machines, and Neural Networks [86]. 
Valid comparisons between methods are essential. The 
Mother Of All BCI Benchmarks (MOABB) [79,87] pro-
ject offers comprehensive comparison tools that enable 
ranking new and existing algorithms with publicly avail-
able datasets, paving the way for reproducible research. 
We reviewed a practical example and explained the 
underlying code.

Timeflux (https://timeflux.io/) [80] is an open-source 
framework for building online BCIs. It is capable of 
acquiring, recording, and processing biosignals in real- 
time. It can also present precisely scheduled stimuli. It 
works hand-in-hand with PyRiemann and MOABB and 
rests on the shoulders of standard libraries such as 
Pandas [88], Scikit-learn [89], Lab Streaming Layer 
[90], and HDF5 [91]. It comes with a rich set of nodes 
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and plugins for dynamic epoching, matrix manipula-
tion, digital signal processing, machine learning, and 
other tools. It also provides a convenient JavaScript 
API for developing web interfaces. We reviewed the 
architectural principles of Timeflux and explained how 
to use it to design a P300 speller, finishing with 
a functional demo that runs in a web browser.

We only introduced the potential of the Python lan-
guage for the BCI field. For instance, we only briefly 
described MNE [92], a full-fledged framework for off-
line analysis of EEG and MEG signals. This workshop 
provided a good starting point for further exploration. 
The presentation slides, notebooks, and code are pub-
licly available [93].

2.5. Artificial intelligence in brain-computer 
interfacing

Organizer: Moritz Grosse-Wentrup (University of 
Vienna)

Additional Presenters: Tonio Ball (University of 
Freiburg), Aldo Faisal (Imperial College London), 
Gernot Müller-Putz (Graz University of Technology)

Artificial intelligence (AI) methods in general, and 
deep learning algorithms in particular, have revolutio-
nized the field of machine learning [94]. Current AI 
systems outperform human experts in various cogni-
tively challenging tasks [95,96] and have enabled scien-
tific insights that arguably could not have been obtained 
by human intelligence alone [97]. More recently, deep 
learning methods have been adapted to and developed 
for brain decoding and BCI systems [98,99]. Building on 
a long history of discussions on the benefits of nonlinear 
decoding methods in BCI [100], this workshop dis-
cussed whether AI can outperform traditional BCI 
machine learning methods and which challenges should 
be addressed to realize the full potential of AI in BCI.

The consensus on the current performance of AI-BCI 
methods was that they perform essentially on par with 
the best non-deep decoding algorithms. However, 
a rigorous comparison of state-of-the-art Riemannian 
decoding methods [76,101] with AI algorithms has yet 
to be done. The workshop participants concluded that 
a large-scale brain decoding challenge, e.g. hosted by 
a major AI or machine learning conference, would be 
well suited for realizing a fair comparison of competing 
decoding architectures (e.g. https://beetl.ai/).

The workshop participants then considered which 
issues prevent, at least so far, AI methods from revolu-
tionizing BCI systems in the same way they have already 
transformed other data-driven applications. The pri-
mary bottleneck identified in the discussion was the 
absence of large-scale datasets in the field of BCI. 

These datasets would ideally comprise thousands or 
even millions of BCI users from heterogeneous settings, 
i.e. including numerous experimental paradigms, 
recording setups, and user groups. While the workshop 
participants acknowledged the efforts of the BCI com-
munity to record large-scale datasets [102], they also 
noted that collecting datasets on a similar scale as 
those available in other scientific disciplines [103] is 
probably beyond the capabilities of the academic com-
munity. Consequently, the discussion shifted to the role 
of commercial BCI applications in recording and pro-
viding access to large-scale datasets. Several consumer 
EEG headsets have reached market readiness with the 
expectation of prompt deployment in passive BCI appli-
cations[104]. Comprehensive access to data recorded by 
these applications could provide the large-scale datasets 
required to realize the full potential of AI-BCI systems. 
In particular, the heterogeneous nature of such data, 
which stands in contrast to the homogeneous data typi-
cally recorded in academic settings, could be considered 
an advantage. The diversity of data might be leveraged 
to create feature representations that are user- as well as 
hardware-independent. Such feature representations 
would be essential to realize zero-training BCIs for 
commercial applications [105–107].

However, leveraging commercially recorded EEG 
datasets poses significant practical, legal, and ethical 
challenges. It is unclear what incentives companies 
would have to share their data publicly. Also, proce-
dures would have to be developed that realize informed 
consent and honor data privacy regulations. The work-
shop participants considered an active engagement of 
the BCI community with industrial partners essential to 
make large-scale datasets a reality and realize the full 
potential of AI-BCI systems.

2.6. Adaptation in closed-loop BCIs

Organizer: Tetiana Aksenova (University Grenoble 
Alpes, CEA, LETI, CLINATEC)

Additional Presenters: Amy L. Orsborn (University of 
Washington), Martin Bogdan, Sophie Adama 
(Universität Leipzig), Blaise Yvert (U1205 Inserm, 
University Grenoble Alpes), José del R. Millán 
(University of Texas at Austin), Jean Faber 
(Universidade Federal de São Paulo)

BCI decoders calibrated in an open-loop, offline 
paradigm but then applied in close-loop, online para-
digm show a significant drop in decoding performance. 
Adaptive algorithms in a closed-loop session decrease 
this shortcoming by directly adjusting BCI parameters 
to incoming data. In addition, both the user and 
machine learn in a closed-loop BCI.
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Closed-loop paradigms are often applied to BCIs that 
decode motor signals. Intracranial ECoG [108,109] 
from a participant with tetraplegia was decoded with 
a fully adaptive decoder to operate a 4-limb exoskeleton. 
The decoder used an adaptive Markov mixture of multi-
linear experts [110] to switch between independent 
decoders (experts) to interpret multiple degrees of 
freedom.

Closed-loop paradigms enable user/decoder co- 
adaptation to maximize performance through syner-
gistic user-machine interactions between the two 
learners e.g [111]. However, learning trajectory mod-
els are needed to optimize these co-adaptive systems. 
A new game-theoretic model of co-adaptation [112] 
provides a framework to analyze system equilibria 
and predicts learning trajectories, but requires 
validation.

The balance of decoder vs patient adaptation is 
important. EEG-based motor BCIs illustrate the pros 
and cons of extensive machine-learning adaptation. 
Non-supervised context-aware algorithms can rapidly 
adapt so users can use a language model-based spel-
ler [113] without a calibration phase [114,115]. 
However, this does not promote user learning – 
EEG patterns for BCI commands actually became 
less separable with practice rather than improving 
[115]. True mutual learning, where decoder and 
user learn from each other, seems to require slow 
decoder adaptation to promote improved EEG fea-
tures [116] as seen in several longitudinal stu-
dies [117].

Mutual learning implies cortical plasticity and the 
BCI use as a neurorehabilitation tool specifically 
designed to support plasticity (i.e. user learning). 
A clinical trial in patients with severe hand plegia from 
stroke compared the effect of BCI-operated vs random 
functional electrical stimulation. Only the BCI group 
had significant and clinically important functional 
improvement and a significant increase of functional 
connectivity in the damaged sensorimotor hemisphere 
[118]. Regulation of the magnitude of the required EEG 
response was critical to keep the patient’s attention high 
and promote recovery.

Hybrid BCIs (HBCIs) integrate brain and non-brain 
data sources with different classifiers schemes (serial, 
parallel, mixed) to achieve better results [119]. Thus, 
neuroplasticity can happen in multiple dimensions and 
temporal scales. Different learning times are associated 
with different physiological systems such as autonomic 
learning (heart/breath adaptation) [120,121], motor 
learning (agency and control refinement) [122,123], 
central learning (cortical adaptations) [124], and cogni-
tive learning (embodiment, ownership, and spatial 

perception) [125]. HBCIs therefore present a more com-
plex challenge for balancing classifier adaptation rate vs. 
neural plasticity.

Adaptive BCIs also exist for non-motor applications. 
The hybrid Adaptive Decision-Making system was 
designed for a patient with complete locked-in syn-
drome (CLIS) and uses multiple EEG features 
(Granger causality, the imaginary part of the coherency, 
and multiscale sample entropy) to increase the prob-
ability of correctly evaluating consciousness level [126]. 
Caregiver observations regarding the patient’s state 
were input into the machine learning system to perso-
nalized consciousness-level estimation. An adaptive 
speech BCI application illustrates the risk of audio con-
tamination of neuronal activity recordings [127].

Group discussion placed a priority on developing 
better understanding of co-adaptation from both theo-
retical and experimental viewpoints to optimize BCI 
training and user benefit.

2.7. Optimising BCI performance by integrating 
information on the user’s internal state

Organizer: Sebastian Halder (University of Essex)
Additional Presenters: Philipp Ziebell, University of 

Würzburg), Angela Riccio (Fondazione Santa Lucia), 
Yiyuan Han (University of Essex)

Ideally, a BCI could detect the physical and mental 
state of the user and adapt accordingly to allow optimal 
BCI control for both unimpaired and motor impaired 
end-users. This adaptation could (1) determine when to 
start, pause or stop a BCI session, (2) adapt parameters 
of the BCI session such as trial length, stimulus, and 
feedback modality, or (3) switch between BCI and other 
assistive technology types. User-centered design (UCD) 
is critical to optimize BCI control in this manner [128]. 
In general terms, an assistive technology should enable 
a person with a disability to overcome barriers in daily 
life, education, work, or leisure [129]. This can only be 
achieved if the needs and requirements of the user are 
investigated [130,131]. Regarding BCI design, the cog-
nitive [132–134] and physical [135,136] characteristics 
of end-users need to be considered [132,133]. Based on 
this knowledge, we can implement a system that adapts 
to the internal state of the user.

The UCD evaluation process is built around metrics 
to determine effectiveness (accuracy in percent of cor-
rect responses), efficiency (information transfer rate in 
bits/min and subjective workload) and satisfaction (via 
visual analog scale, questionnaire, or user interview) 
[137,138]. These metrics should also inform earlier 
stage BCI development before end-user evaluation 
[139,140]. Further factors should be considered when 
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designing the BCI paradigm, for instance, the design of 
tasks, feedback, instructions, and signal processing 
[86,141–143]. Performance may improve via engaging 
task design (e.g. a ‘Star Wars Mission’ task) and explor-
ing different stimulus modalities (such as auditory and 
tactile) and better understanding of the mechanisms 
underlying training with a BCI [140,144].

User characteristics ranging from physiological (e.g. 
the amplitude of the sensorimotor rhythm during rest 
[145]) to psychological (e.g. the ability to concentrate 
[132,146]) can influence performance in varying 
degrees. For example, a user with a traumatic brain 
injury may be in a minimally conscious state with only 
transient windows of consciousness [147,148]. 
Identifying such windows is an undeniable prerequisite 
to BCI control [149]. Evaluation of the efficacy of such 
measures and any new measures that will be developed 
can be accomplished during pharmacologically induced 
loss of consciousness such as the Wada test [150]. More 
subtle influences on BCI control may arise due to mood 
and motivation, fatigue and workload or whether the 
user is experiencing pain, which can be detected using 
integrative features such as phase-based connectivity 
[151–153]. Ideally, the BCI could adapt to all changes 
in the users’ state. Doing this efficiently requires knowl-
edge of features in the EEG (or other signals) that reflect 
the state of the user.

Many challenges must be resolved before the full 
potential of the state of the user can be reliably used to 
optimize BCI performance. The main challenge comes 
from the variety of states that need to be decoded, each 
requiring the identification of signal features that reflect 
these states, and integrating real-time identification of 
the states into the BCI design and usage environment.

3. BCIs for specific populations or applications

3.1. The design of effective BCIs for children

Organizers: James J.S. Norton (National Center for 
Adaptive Neurotechnologies), Disha Gupta (National 
Center for Adaptive Neurotechnologies), Eli Kinney- 
Lang (University of Calgary)

Additional Presenters: Kim Adams (University of 
Alberta), Tom Chau (University of Toronto), Erica 
Floreani (University of Calgary), Kathleen M. Friel 
(Burke Neurological Institute), Dion Kelly (University 
of Calgary), Adam Kirton (University of Calgary), Ilyas 
Sadybekov (University of Calgary), Corinne Tuck 
(Glenrose Rehabilitation Hospital-I CAN Centre).

BCIs have the potential to enhance, restore, or 
replace function in children with neurodevelopmental 
disorders, neurodegenerative disorders, and severe 

motor disabilities caused by stroke, spinal cord injury, 
or other acquired injuries [154–157]. However, few 
studies have investigated BCIs for children [158–161] 
and these studies show conflicting results; it remains 
unclear whether children – especially those with neuro-
logical disabilities – can effectively use BCIs. Thus, this 
workshop was organized into three discussion panels 
that:

(1) Examined how BCIs can improve children’s 
quality-of-life – Children can use BCIs to [162] 
communicate, play games, and express them-
selves creatively. The greatest benefit BCIs offer 
children with motor disabilities is a sense of 
control, motivating children to engage more 
with BCIs and enabling them to practice repeti-
tive tasks that lead to learning. Thus, the child’s 
perception of a successful BCI may not match 
that of a researcher. For example, operating a BCI 
using a combination of brain activity and arti-
facts may improve the child’s life and be consid-
ered a success from the child’s perspective. 
Therefore, special consideration is needed to 
simultaneously engage children in activities that 
are educational, therapeutic, meet the goals of 
researchers, and are engaging for the children. 
Recommended strategies are gamification [163– 
167] and close interdisciplinary collaboration 
between diverse experts.

(2) Discussed the interfacing, signal-processing, 
and physiological challenges encountered dur-
ing the design of BCIs for kids – Developing 
BCIs for children presents unique signal acquisi-
tion, data analysis, and reporting challenges 
[154]. Signal acquisition hardware for pediatric 
BCIs needs to be more portable, lighter, more 
comfortable, and easier to use (e.g. faster setup, 
dry electrodes, robust to artifacts). Presently only 
a few signal analysis pipelines exist for pediatric 
BCIs [168,169], due in part to differences in the 
EEG from children compared to adults [170]. For 
example, P300 timing varies more in children 
and BCIs may be more fatiguing for children. 
Improved and consistent reporting of demo-
graphic information and experimental details 
would allow for better cross-study analyses. 
Lastly, improved user interfaces are an area of 
critical need for pediatric BCIs.

(3) Considered the use of BCIs for children as aug-
mentative and alternative communication 
devices and for rehabilitation in clinical settings – 
The design of BCIs for communication and reha-
bilitation in children benefits from a patient- 

8 J. E. HUGGINS ET AL.



centered and neurologic deficit-specific approach 
[161,171]. For example, many children express 
an interest in using BCIs for gaming and social 
play. Collaborative and competitive interactions 
between family members, and especially siblings, 
are a critical social outlet for children with motor 
deficits that motivate them to use BCIs. 
Neurological deficits may be caused by damage 
to small areas of the brain that were acquired very 
early in life. Thus, the brain may reorganize and 
researchers should work with clinicians to con-
sider neuroplasticity in the design of BCIs for 
children [172,173]. In addition, working with 
clinicians and families will increase awareness 
of the potential of BCIs for children [174].

As members of the pediatric BCI community, we 
must put children first, understand what children want 
out of BCIs, and make it happen.

3.2. Non-invasive BCIs for people with cerebral 
palsy

Organizer: Jane E. Huggins (University of Michigan)
Additional Presenters: Katya Hill (University of 

Pittsburgh), Petra Karlsson (Cerebral Palsy Alliance, 
University of Sydney), Reinhold Scherer (University of 
Essex)

This workshop included extensive discussion about 
BCI design considerations for people with cerebral palsy 
(CP), the most common childhood physical disability 
[175]. CP is caused by injury or genetic abnormalities 
affecting the brain early in life leading to 15–19% with-
out a communication method even with assistive tech-
nology [176–179]. However, BCIs that provide 
augmentative and alternative communication (AAC) 
for individuals with adult-onset impairments may unin-
tentionally rely on skills that people with CP have not 
had an opportunity to learn.

Issues from the workshop Design of Effective BCIs for 
Children apply to children and adults with CP because 
of missed educational opportunities. Even those who 
have successful communication technology may need 
a BCI as age increases the severity of motor impair-
ments. This makes BCI a competitive access option. 
For example, a participant with CP had similar commu-
nication rates on an AAC device with head-pointer 
access (1.33 words-per-minute, wpm) and BCI access 
(1.29 wpm).

Overall, BCI studies with people with CP show mixed 
results [162,180,181]. Some comparisons of BCI designs 
showed that SSVEP and SMR designs were preferred to 
the P300 design and had better performance [181]. 

Other comparisons of naïve users showed that some 
had significant SMR-BCI control (2 classes, 82 ± 12%), 
others significant SSVEP-BCI control (4 classes, 
43 ± 7%), but few could use both and some could not 
use any BCI [182,183].

Such results raise the specter that current BCI 
methods may not be appropriate for people with 
CP. If a person has no voluntary motor control, 
can they operate a motor imagery BCI? Can people 
with limited access to schooling count flashes of 
a P300 BCI or perform mental arithmetic or spatial 
navigation?

EEG recordings are complicated in people with 
CP due to head shape variations or improper elec-
trode cap fit [184,185] as head asymmetry is reported 
among 40% of people with the most severe impair-
ments from CP [186] and microcephaly at 30% [187] 
to 60% [188]. Abnormal neuroanatomy can also 
cause unusual localization of cortical function [189]. 
The impact on BCI is uncertain, but people with 
severe CP can benefit from individualized electrode 
locations [184,190].

Extraneous movements, which are common [191], 
can also create EEG artifacts [e.g. [182],] and may 
make it difficult to focus on the BCI display. Further, 
gaze or visual impairments including ptosis (droop-
ing) of the eye lid, nystagmus, and cerebral visual 
impairment (CVI) can lead to difficulty interpreting 
visual stimuli [192] for an SSVEP or P300 BCI device 
or visual feedback for an SMR BCI. Thus, special 
care is needed to understand how well the user can 
interpret visually presented information.

Indeed, user-centered design is important through-
out BCI design and user training. Acclimation regimes 
may be needed with step-by-step introduction of indi-
vidual BCI concepts. Family interactions, cooperation, 
and competition can increase motivation and engage-
ment, which are essential for learning, but not 
a guarantor of good performance [193]. These factors 
are crucial as people with CP may have a long history of 
unsuccessful attempts to operate technology. Thus, the 
ideal BCI would be calibrated without the user following 
instructions, have intuitive operation, and be inherently 
engaging. In addition, systems should build on familiar 
concepts, such as row-column scanning, to simplify the 
transition from calibration to end-use [183].

Ultimately, we need improved understanding of the 
effect of CP on EEG, user-centered design to match the 
BCI to the interest and needs of individual users, and 
user-tailored training paradigms. Finally, it is vital to 
recognize that for children with congenital disabilities, 
technology use and even communication itself, are skills 
that must be taught.

BRAIN-COMPUTER INTERFACES 9



3.3. From speech decoding to speech 
neuroprostheses

Organizer: Christian Herff (Maastricht University) and 
Sergey Stavisky (University of California, Davis)

Additional Presenters: Jon Brumberg (Kansas 
University), Phil Kennedy (Neural Signals Inc.), Miguel 
Angrick (University of Bremen), Julia Berezutskaya 
(Radboud University), Qinwan Rabbani (Johns Hopkins 
University)

Despite impressive recent results in decoding speech 
from neural recordings, there remain many challenges 
to achieving a real-time, large-vocabulary BCI for 
restoring lost speech. In this workshop, five of these 
challenges, and potential solutions, were discussed.

First, existing speech decoding demonstrations have 
not yet achieved consistently intelligible outputs. 
Multiple groups presented new decoding architectures, 
including recurrent neural networks and GANs. 
Workshop participants agreed that these modern 
machine learning approaches should benefit from addi-
tional data in future studies, and noted that all of the 
work presented used less than 20 minutes of neural 
recordings. Further, their performance did not saturate 
with training data quantity subsampled within these 
limited datasets.

A second challenge is how to obtain highly informative 
neural correlates about speech intent. Previous research 
almost exclusively relied on ECoG signals, which are not 
regularly used for long-term measurement. However, 
high-quality speech decoding and synthesis can also be 
achieved using penetrating microarrays implanted in the 
dorsal motor cortex [194], even though that area is not 
typically associated with speech production [195]. These 
Utah arrays have been used for multiple-year recordings 
in a number of participants and achieved high perfor-
mance in, e.g. online decoding of attempted handwriting 
in people with tetraplegia [196] or speech perception 
decoding [197]. Alternatively, stereotactic EEG, which is 
very similar to Deep Brain Stimulation electrodes [198] 
that routinely remain implanted for decades, was pro-
posed for high-quality speech synthesis. The neuro-
trophic electrode, an entirely different type of electrode 
with good long-term potential [199], was also proposed 
for speech neuroprosthesis [200].

Third, a functioning neuroprosthesis needs to gen-
erate or decode speech in or near real-time [45]. 
However, previous studies demonstrating speech synth-
esis [44,201] or speech recognition [202,203] from 
ECoG data have primarily (except for [204,205]) been 
done offline on previously recorded overt or whispered 
speech. Approaches that process and decode intracra-
nial EEG in real-time will provide direct feedback to the 

patient. This has been done using imagined speech 
processes [206], building on prior work such as [207]. 
Recent progress toward a low latency (250 ms) ECoG 
speech synthesis pipeline shows proof-of-concept open- 
loop results. A non-invasive EEG neuroprosthesis based 
on an artificial vocal tract model [207] provides auditory 
and visual feedback to the user and might therefore help 
train speech neuroprosthesis users and pilot online 
speech BCI methods.

Fourth, the field would benefit from better speech 
synthesis performance metrics. Recent works typically 
uses variants on measuring correlation between true 
and decoded audio (e.g. for spectral or pitch features), 
which are poor proxies for intelligibility. Workshop 
participants agreed that adopting subjective intelligibil-
ity metrics is important, but this may need to wait until 
decoding performance is good enough for these metrics 
to become relevant (or else they will suffer from floor 
effects).

Fifth, all presenters agreed that data sharing is key to 
accelerating progress. One recently shared large dataset 
of speech perception in fMRI, ECoG, and sEEG, along 
with the associated impressive reconstruction quality 
provides the public research community with a fully 
annotated dataset [208].

3.4. Brain–computer interfaces for the assessment 
of patients with disorders of consciousness

Organizer: Christoph Guger (g.tec Guger 
Technologies OG)

Additional Presenters: Damien Coyle, (Ulster 
University), Kyousuke Kamada, (Hokashin Group 
Megumino Hospital), Rossella Spataro, (University of 
Palermo), Jing Jin, (East China University), Steven 
Laureys, (Brain Centre & GIGA Consciousness, Coma 
Science Group, University and University Hospital of 
Liege, Belgium; International Disorders of 
Consciousness Institute, Hangzhou Normal University, 
China; CERVO Brain Research, U Laval)

Bedside evaluation to assess conscious awareness 
after coma requires inferences based on patients’ 
motor responsiveness [209] with limited diagnostic pre-
cision and prognostic information, increasing the ethi-
cal difficulty of decisions on life-prolonging therapies. 
Technologies such as functional neuroimaging and 
BCIs provide objective tools for diagnostic, prognostic, 
and therapeutic purposes [210]. About two-thirds of 
patients clinically diagnosed with ‘unresponsive wake-
fulness syndrome (UWS)’ (or ‘persistent vegetative 
state’) may show residual brain activity in PET studies 
[211] and are hence actually in a minimally conscious 
state (MCS) with a better chance of recovery.
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BCIs can help reduce the diagnostic and prognostic 
uncertainty of both acute and chronic disorders of con-
sciousness [212,213]. BCI should first be used to estab-
lish a reliable and reproducible response to a simple 
command. Then, one can attempt functional commu-
nication with simple yes/no questions and eventually 
spelling or message creation [212,213]. The 
mindBEAGLE (g.tec medical engineering GmbH) uses 
auditory P300, vibro-tactile P300 and motor imagery 
paradigms for these steps and rehabilitation protocols. 
Paradigms include a quick (2–8 minute) system calibra-
tion or patient assessment. Other BCI systems have also 
been designed for this purpose, including using auditory 
sensorimotor rhythm feedback for those with visual 
impairments [214,215].

BCI assessment of DOC with locked-in and comple-
tely locked-in patients found 9 out of 12 patients could 
demonstrate command following by answering YES/ 
NO questions [216]. Building on the pilot of 15 patients 
reported in [215], the workshop reported an update 
with 25 patients who each participated in 10, one-hour 
motor imagery BCI sessions. Of these, 5/9 UWS, 7/11 
MCS, and 3/4 locked-in syndrome demonstrated signif-
icant capacity to modulate brain activity in stage 
I (assessment) and progressed to stage II/III (auditory 
feedback training and Q&A response). All participants 
in stage II/III responded significantly to YES/NO ques-
tions. Another study with unresponsive patients showed 
3 out of 12 patients could successfully answer the YES/ 
NO questions on some assessment days [217], showing 
that these patients have fluctuations in consciousness 
that can be detected by BCI systems.

BCIs can also help predict eventual recovery. 
Auditory P300 and vibro-tactile P300 provided 
a predictor of functional recovery for two patients with 
DOC. One patient did not show any auditory P300 or 
vibro-tactile P300 after three weeks and coma continued 
for more than 6 months. A second patient responded to 
auditory P300 and vibro-tactile P300 and after 6 months 
had recovered from coma and understood verbal com-
mands. Such patients may benefit not only from BCI 
assessment, but also from BCI-based rehabilitation 
[218]. Longitudinal observation of 12 DOC patients 
showed that achieving mindBEAGLE classification 
accuracy of at least 50% predicts recovery of behavioral 
responsiveness (after six months) as measured by the 
coma-recovery scale revised (CRS-R) [219]. Moreover, 
12 of 20 patients showed CRS-R score improvement 
after 10 sessions of a vibrotactile stimulation proto-
col [218].

BCI can also evaluate the effectiveness of other treat-
ments for arousing DOC patients by analyzing EEG 
recorded during mental tasks before and after 

intervention. BCI methods have been used to assess 
the effectiveness of spinal cord stimulation and deep 
brain stimulation surgeries in arousing vegetative 
patients. Auditory, vibro-tactile, or motor imagery- 
based BCI systems have been used to assess five unre-
sponsive patients and three vegetative patients in this 
on-going study.

BCIs are being cross-validated against neuroimaging 
techniques such as PET and fMRI [220]. The current 
challenge is to integrate BCIs with our increasing scien-
tific understanding of recovery from severe brain injury 
to optimize the trajectory of clinical care after coma and 
improve the quality-of-life in disorders of consciousness 
and locked-in syndro me [221].

3.5. The promise of BCI-driven functional recovery 
after stroke: leveraging current evidence to define 
next steps

Organizer: A Nicole Dusang (Brown University/ 
Providence VA Medical Center/Massachusetts General 
Hospital)

Additional Presenters: Murat Akcakaya (University of 
Pittsburgh); Febo Cincotti (Sapienza University); 
Cuntai Guan (Nanyang Technological University); 
Christoph Guger (g.tec medical engineering GmbH); 
Kyousuke Kamada (Asahikawa Medical University); 
David Lin (Massachusetts General Hospital/ 
Providence VA Medical Center); Donatella Mattia 
(Fondazione Santa Lucia IRCCS); José del R. Millán 
(University of Texas at Austin); Ander Ramos- 
Murguialday (University of Tübingen/TECNALIA 
Research and Innovation); Vivek Prabhakaran 
(University of Wisconsin-Madison); and George 
F. Wittenberg (Pittsburgh VA Healthcare System/ 
University of Pittsburgh)

Stroke is a leading cause of long-term disability 
worldwide, and 30–50% of stroke patients experience 
limited recovery. Rehabilitative EEG-BCIs are 
a promising neurotechnology for restoration of function 
after stroke. The hypothesis behind rehabilitative BCIs 
is that coupling neural activity with sensory feedback of 
limb movement induces cortical plasticity, improving 
functional recovery. This workshop featured 12 
researchers developing rehabilitative EEG-BCIs for 
functional recovery from 10 institutions around the 
globe. Presenters were split into two panels to consider 
how to translate this technology from the lab to the 
clinic. Randomized controlled trials (RCTs) have 
demonstrated the benefit of Rehabilitative EEG- 
BCIs but employed diverse control methods, therapy 
doses, dosing intervals, and different types of neural 
dynamics and sensory feedback.
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Panel 1 discussed optimal EEG-BCI support for 
stroke rehabilitation. Spatial neglect is an often over-
looked deficit in stroke patients though it can signifi-
cantly impact a patient’s response to therapeutic 
intervention [222]. Technology is needed to objectively 
map neglect, quantify changes during recovery, and 
provide a rehabilitation platform to target spatial 
neglect. Although BCI addresses a gap in standard neu-
rorehabilitation medicine [223], it still lacks an 
American Heart Association (AHA) class and evidence 
rating. BCIs empirically measure the signals of the 
damaged cortex and patients’ functional disability dur-
ing recovery. Rehabilitative EEG-BCIs restore the neural 
activity-functional output connection, supporting the 
retraining of neural activity. This is demonstrated by 
an RCT evaluating an EEG-BCI intervention for distal 
upper extremity function in a chronic stroke population 
[224]. Results showed 64% of participants made signifi-
cant gains in both primary and secondary outcome 
measures.

Panel 2 reflected on stakeholders’ needs for trans-
lating this promising technology to a clinical envir-
onment. Although RCTs have demonstrated the 
therapeutic efficacy of rehabilitative EEG-BCIs, com-
mercialization requires clear clinical and economic 
benefit and reliable function within the rigors and 
environment of long-term clinical use. BCI-FES sys-
tems must address both patients’ and clinicians’ 
needs [225]. Patients need an effective and engaging 
rehabilitation platform, while clinicians require 
a plug-n-play system with remote technical assistance 
and joint analysis. Unanswered questions remain 
along the spectrum of basic research to patient care 
[226]. The field has yet to determine the optimal 
neural modalities or features for rehabilitative EEG- 
BCIs, resulting in significant feature extraction varia-
bility in current EEG-BCI platforms. Additionally, 
past and current RCTs employed diverse outcome 
measures since no measure is clearly best for captur-
ing recovery. Further, stroke is itself a heterogeneous 
condition and much remains unknown about the 
relationship between the type and location of damage 
and resulting deficits. The RecoveriX system (Guger 
Technologies), a certified medical product, analyzes 
motor imagery to trigger FES for upper and/or lower 
limbs. RecoveriX has shown effectiveness for spasti-
city reduction and movement restoration in upper 
and lower limbs [227,228].

Convincing clinicians, patients, and payers that 
Rehabilitative BCIs are a worthy technology for invest-
ment was felt to require a large, multi-site, randomized 
control trial study, incorporating methods to minimize, 
or scientifically account for, heterogeneity between 

technology and control populations at various sites. 
Ideally, it will also address knowledge gaps such as long- 
term effects, dose–response curves, patient stratifica-
tion, control features, and a comprehensive outcome 
evaluation.

3.6. Towards the decoding of neural information 
for motor control: present and future approaches

Organizer: Gernot Müller-Putz (Graz University of 
Technology)

Additional Presenters: Andrea I. Sburlea (Graz 
University of Technology), Valeria Mondini (Graz 
University of Technology), Damien Coyle (Ulster 
University), Cuntai Guan (NTU Singapore), Tonio Ball 
(University of Freiburg)

For people with a cervical spinal cord injury (SCI) 
from trauma or disease, upper extremity function is 
often reduced or lost, resulting in dependency on 
a caregiver or family member for most daily activities. 
BCI researchers have for decades worked to derive 
motor commands directly from brain activity to bypass 
the interrupted spinal cord pathways and establish 
direct control of a neuroprosthetics device [229] or 
robotic arm/exoskeleton [230]. Implantable BCI 
approaches have produced many advances [231,232], 
however, in recent years, non-invasive approaches 
have moved beyond proof of concepts [233–235] and 
made major steps towards full arm control. This work-
shop focused on state-of-the-art approaches to non- 
invasive neural control of movement.

Non-invasive detection of multiple types of hand 
movements have been reported, including for people 
with cervical SCI [236,237]. Analysis of movement- 
related cortical potentials (MRCP) can detect and 
decode single hand movements [238] or movement 
attempts (e.g. hand open vs. hand close) or even differ-
ent grasps (e.g. palmar vs. lateral grasp) [239,240].

Understanding the neural and behavioral mechan-
isms involved in grasping is important for successful 
decoding. Investigations included the relationship 
between the broad-band EEG representation of obser-
ving and executing a large variety of hand–object inter-
actions and the muscle and kinematic representations 
associated with the grasping execution [241]. Object 
properties and grasp types can be decoded during the 
planning and execution of the movement. Properties of 
the objects could be decoded even during the observa-
tion stage, while the grasp type could be accurately 
decoded even during the object release stage [242].

While the decoding of arm/hand trajectories has 
mainly been shown in intracortical recordings, major 
steps in the non-invasive field have been demonstrated. 
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Closed-loop continuous decoding of executed [243,244] 
but also attempted arm movement [245] has been done 
from low-frequency EEG. Movement parameters like 
position and velocity, necessary for decoding [246,247] 
were presented. In particular, the contribution of non- 
directional movement-parameters (distance and speed) 
has been highlighted [248–250]. Also, the first evidence 
for online decoding of attempted continuous movement 
has been reported [245]. Eye movement artifacts present 
a special challenge for all non-invasive decoding studies. 
Participants must be permitted to use their gaze to 
follow the feedback, electroc-oculogram (EOG) signals 
must therefore be removed from the EEG online [251].

In addition to decode of low-frequency EEG compo-
nents, decoding of executed and imagined 3D reaching 
tasks have involved delta frequencies, but also alpha, low 
and high beta frequencies [252,253]. These studies 
include decoding of 3D lower limb movements that 
could be important for gait rehabilitation [254].

In the area of motor imagery and stroke rehabilita-
tion, deep learning methods and convolutional neural 
networks (CNN) have been used for participant specific 
[255,256], participant-independent [257], and adaptive 
classifiers [258]. CNNs have also been used in assistive 
robot control with online adaptive motor classifica-
tion [259].

Beyond the pure application of CNNs for decoding 
[98], the internal data representation and the effects of 
hidden unit activations provide possible insights into 
what the units of such networks learn and the possible 
hierarchical organization of spectral features [260]. 
These first insights may open a new way of understand-
ing brain processes.

3.7. Biomimetic approaches to restore 
somatosensation

Organizer: Robert Gaunt (University of Pittsburgh)
Additional Presenters: Sliman Bensmaia (University 

of Chicago), Karthik Kumaravelu (Duke University), 
Alberto Mazzoni (Scuola Superiore Sant’Anna), Emily 
Gracyzk (Case Western Reserve University), Luke 
Bashford (California Institute of Technology), Chris 
Hughes (University of Pittsburgh)

Rapid advances in BCI capabilities to decode and 
restore upper limb motor functions [261] often ignore 
the accompanying sensory losses. Strategies to restore 
somatosensation include intracortical microstimulation 
[262,263], cortical epidural stimulation [264–266], per-
ipheral nerve stimulation [267–269] and spinal cord 
stimulation [270]. Regardless of approach, it is difficult 
to select stimulus parameters that improve the quality of 
conscious percepts and maximize functional 

capabilities. This workshop explored the idea of using 
biomimicry as a framework to create stimulus trains. 
Biomimetic stimulation leverages knowledge of intact 
somatosensory neurophysiology with the intuition that 
stimulation parameters that evoke patterns of neural 
activity that match normal patterns will improve per-
ception and function.

Decades of work characterizing skin mechanoreceptor 
responses in the hand during object manipulation [271] 
were integrated into TouchSim to accurately simulate 
primary afferent responses to a mechanical input [272]. 
The simulated population-level activity resembles the 
spatiotemporal dynamics of somatosensory neurons in 
the cortex during the same mechanical stimuli [273], with 
large transient signals at contact onset and offset 
[271,274]. However, simply replacing recorded or simu-
lated spikes with stimulation pulses does not replicate the 
sensation. Additional computations are required to 
address anatomical complexities and electrical stimula-
tion biophysics. A simulation platform using genetic 
algorithms and finite element models of the cortex, popu-
lated with realistic neurons, was developed to address 
these complexities [275]. Critically, the stimulus trains 
created through simulation more faithfully represented 
the desired cortical activity than stimulus trains designed 
using standard methods.

The utility of this computational tool and the princi-
ples of biomimicry were tested in peripheral nerve sti-
mulation experiments in amputees. As a baseline, linear 
stimulation encoding schemes that did not capture 
important features of natural neural coding were effec-
tively used by participants [267]. Similarly, event-based 
stimulation encoding that mimicked the natural onset- 
offset dynamics of primary afferents was also effective 
[276]. However, in a direct comparison, TouchSim was 
used to create multiple stimulation trains that were 
increasingly biomimetic. The most natural sensations 
were obtained with the stimulus trains that maximized 
biomimicry [277]. In other experiments, early work 
suggested that a particular biomimetic train could 
improve naturalness [269]. Upon repetition, and despite 
considerable effort to combine modeled fascicle recruit-
ment with biomimetic and non-biomimetic stimulation 
trains, just two of five participants reported more nat-
ural sensation using biomimetic trains, highlighting the 
limitations of single-subject studies of perception.

Two different aspects of biomimicry were explored in 
human intracortical BCIs. Motor imagery and actual 
movement evoke similar brain activity. To explore this 
concept for somatosensation, neural activity patterns 
were recorded in somatosensory cortex and the supra-
marginal gyrus during imagined sensations [278]. 
Different imagined sensations were encoded stably in 
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the somatosensory cortex, suggesting that imagined sen-
sation could guide stimulus train design, even in people 
left insensate from their injury. Finally, in a direct test of 
biomimetic principles, intracortical stimulus trains 
using fixed amplitudes and frequencies were compared 
to trains with stimulation amplitudes modulated by 
cortical activity patterns recorded from non-human 
primates [274]. The participant frequently rated the 
biomimetic trains as more natural, especially when the 
overall intensity was matched.

In summary, biomimicry is a principled and likely 
fruitful approach to create stimulation trains to restore 
somatosensation. Simulation and modeling tools can 
help design these trains, which have outperformed less 
realistic trains in both the peripheral and central ner-
vous systems. Nevertheless, considerable development 
is still necessary, and these results must be validated in 
larger numbers of participants.

4. Expanding BCI Usability and availability

4.1. Toward an international consensus on user 
characterization and BCI outcomes in settings of 
daily living

Organizers: Mariska Vansteensel (UMC Utrecht) and 
Nataliya Kosmyna (Massachusetts Institute of 
Technology)

Additional Presenters: Andrew Geronimo 
(Department of Neurosurgery, Penn State College of 
Medicine, Hershey, PA, USA), Katya Hill (AAC-BCI 
iNNOVATION LAB, University of Pittsburgh, 
Pittsburgh, PA, USA), Theresa Vaughan (National 
Center for Adaptive Neurotechnologies, Stratton VA 
Medical Center, Albany, NY, USA)

BCI research is growing fast, and implantable and non- 
invasive communication-BCIs are being introduced to 
people with significant motor disability for independent 
use in daily living situations e.g [42,279–286], allowing 
end-users to participate in research and development 
experiments and provide critical input into iterative user- 
centered design [287]. Such studies are crucial for the 
development of usable communication-BCIs and for 
their eventual widespread implementation to resolve the 
communication problems of people with diseases such as 
amyotrophic lateral sclerosis. However, most studies 
include only limited numbers of participants. Since the 
target user population for communication-BCIs is rela-
tively small [288], large studies may not actually be possi-
ble. For translation of communication-BCIs to practical 
use, it is therefore essential to compare results across 
studies and in this way learn about environmental and 
participant/user characteristics affecting BCI performance 

e.g [289–291]. and the different usability perspectives of 
users, caregivers, and other stakeholders. Such comparison 
will strongly benefit from standardized reporting about 
users/participants and their environment, and from the 
use of similar metrics to assess BCI performance and out-
come [292]. This workshop was designed to initiate 
a consensus list of reporting recommendations, specifically 
directed at the use of communication-BCIs in the daily life 
settings of people with significant motor disability. After 
brief presentations to introduce the topics of discussion 
[196,293–302], workshop participants shared their experi-
ences and built consensus in breakout rooms. Key out-
comes of these discussions include:

(1) Standardization is hard. Standardization is 
a hard and complex task. Part of this complexity 
comes from the different focus areas of experi-
ments designed by different disciplines.

(2) Age group matters. Adult and pediatric BCI 
users need different training procedures and dif-
ferent primary outcome measures. But research-
ers need as much comparison as possible.

(3) Meeting users’ end goals is paramount. For any 
system to be introduced in their environment, 
end-users should be strongly involved in BCI 
design, goal setting, and outcome measure selec-
tion. Even existing standard metrics for reporting 
BCI system performance must be adapted to the 
goals of the end-user.

(4) Needs of primary users and their caregiver(s) 
may be different. A BCI has multiple types of 
end-users and researchers must report on how 
well a BCI meets the needs and goals of both 
primary and secondary (e.g. caregivers) users.

(5) Different tasks produce different outcomes. 
BCI outcome measures should consider the 
importance of each task to be conducted with 
the BCI, as well as the desired and accomplished 
frequency of conducting each task.

(6) Fatigue strongly affects BCI performance. Both 
cognitive and physical fatigue need to be assessed 
and reported on.

(7) Medication can affect brain signals. The effect 
of medication should not be underestimated, but 
medication use is seldom reported in papers.

As our next steps, we plan to engage in the bigger 
discussion about standardization, to collect more input 
from BCI researchers, and to use all collected informa-
tion for a formal publication on reporting recommen-
dations related to user characterization and outcome 
measures for the use-case of communication-BCIs in 
settings of daily living.
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4.2. On the need of good practices and standards 
for Benchmarking Brain–Machine Interfaces

Organizer: Ricardo Chavarriaga (Zurich University 
Applied Sciences, ZHAW Switzerland)

Additional Presenters: Paul Sajda (Columbia 
University, USA), José Contreras-Vidal (IUCRC 
BRAIN, University of Houston, USA), Luigi Bianchi 
(‘Tor Vergata’ University of Rome, Italy), Zach 
McKinney (Scuola Superiore Sant’Anna, Italy), Laura 
Y. Cabrera (The Pennsylvania State University, USA)

Translating Brain–Machine Interface (BMI) systems 
onto real applications requires accepted, well-defined 
criteria to assess their effectiveness, usability, and safety. 
Benchmarking, specification, and performance evalua-
tion are perceived as main priorities for standardization 
in the field [292,303,304]. This workshop discussed 
translational challenges, and ethical issues of BMI sys-
tems, as well as existing initiatives to address them.

The Future Neural Therapeutics technology road-
map [305] analyzes closed-loop neurotechnologies 
aimed at treating movement disorders and neurological 
diseases. This document summarizes the state of the art 
and identifies key technological challenges required to 
successfully develop a new generation of these technol-
ogies, including computational power, robustness and 
safety, usability and appropriate regulatory frameworks. 
As BMIs approach commercial availability, attention 
must be paid to concerns generated by the possibility 
of repurposing, misusing, or maliciously using consu-
mer-oriented neurotechnology. These concerns include 
overstated claims on their efficacy or the influence of 
neurotechnology in markets related to employment or 
cognitive enhancement [306–308]. Moreover, wide-
spread use of consumer-oriented technology can lead 
to indiscriminate collection of neural data or user harm 
due to maladaptive processes triggered by neurostimu-
lation devices.

The neuroethics subcommittee of the IEEE Brain 
Initiative focuses on the ethical and societal issues 
related to research and development of neuro-
technologies. They developed the IEEE Neuroethics 
Framework (https://brain.ieee.org/publications/ieee- 
neuroethics-framework/), a collective effort to evalu-
ate the ethical, legal, social, and cultural issues that 
arise with the deployment of neurotechnologies and 
provide explicit guidance on how to address them. 
The framework is organized as a matrix that covers 
existing and emerging neurotechnologies for both 
current and foreseen applications. This framework 
is conceived as a living document that will evolve 
with the technology. Participation in this effort is 
open to interested participants.

Despite the large number of BMI publications, it is 
seldom possible to evaluate, verify, or compare pub-
lished results. Meta-analyses showed that a significant 
number of BCI publications lack necessary information 
[309,310]. However, two standardization activities are 
addressing this issue. The IEEE Standards Working 
Group P2794: Reporting Standard for in vivo Neural 
Interface Research (RSNIR) (https://sagroups.ieee.org/ 
2794/) aims to improve the transparency, interpretabil-
ity, and replicability of neural interface research by 
specifying a set of technological and methodological 
characteristics to be reported in scientific literature 
and technical documentation.

They recently published a set of preliminary require-
ments for implantable neural interfaces [311] and are 
seeking broad community input and participation to 
ensure the Standard reflects the needs of a more diverse 
range of neuroscience and neurotechnology stake-
holders, including device regulators, funding officers, 
clinicians, and end users. Information on providing 
such input can be found through the working group 
website. Another standardization project, IEEE P2731: 
Standard for a Unified Terminology for Brain–Computer 
Interfaces (BCI) (https://sagroups.ieee.org/2731/) aims 
at developing a comprehensive BCI lexicography and 
a functional model of BCI systems [312–314]. It is also 
working on identifying the required information to be 
stored in BCI files to enable efficient sharing of data and 
tools among stakeholders [315]. These activities can 
contribute to the development of standard experimental 
and usage protocols, benchmarking procedures, and 
increased interoperability of neurotechnology systems.

Overall, this workshop highlighted the need to con-
tinuously evaluate the state-of-the-art and the implica-
tions of neurotechnologies. This requires multi- 
stakeholder, anticipatory processes for developing 
appropriate tools including ethical and technical guide-
lines, standards, and regulatory instruments that allow 
translation of neurotechnologies for both consumer and 
medical applications [316–318].

4.3. Lessons from successfully implanted 
neurotechnology

Organizer: Erik Aarnoutse (Brain Center, University 
Medical Center Utrecht)

Additional Presenters: Fabien Sauter-Starace (CEA, 
LETI, Clinatec, University of Grenoble); Leigh 
Hochberg (Brown University; Massachusetts General 
Hospital; Providence VA Medical Center), RI Aysegul 
Gunduz (J. Crayton Pruitt Family Department of 
Biomedical Engineering, University of Florida)
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Over the last 16 years, various clinical trials of 
implantable neurotechnology in humans have demon-
strated successful applications. This technology has 
enabled users to move arms [319,320], walk [108], and 
communicate [42] and has also alleviated disease symp-
toms [61]. Clinical trials require a great deal of effort but 
are an important and informative step along the route to 
wide availability of neurotechnology for users in need.

The route from design to clinical trial was illustrated 
by the Wimagine implant to operate an exoskeleton 
[108]. First, the medical needs of people with quadriplegia 
were combined with the neurosurgical requirements: no 
transcutaneous connection, no limit to battery lifetime 
and limited invasiveness. This created design choices of 
wireless data transmission, inductive charging, and epi-
dural ECoG electrodes. Technical requirements were 
a trade-off between wishes and constraints. Animal stu-
dies assessed signal stability [321]. Regulatory compliance 
to the EU Medical Device Regulation meant proving 
compliance to ISO standards for quality management 
and standards for mechanical, electrical, and thermal 
safety, biocompatibility, and software. The clinical trial 
with bilateral implants has enrolled two patients so far 
[108]. Training was progressive by adding more complex-
ity in the adaptive machine learning algorithm, from 
brain switch to 3D + pronation/supination [322]. The 
signal proved to be stable over months. The exoskeleton 
was only used in the laboratory.

The 17 years of BCI research with penetrating multi- 
electrode arrays produced many lessons [319]. 
Participants are colleagues, but also customers. They 
request new features (user needs), which are added to 
the design [196,323]. The participants’ motive is to 
advance science, they do not expect gain for themselves. 
However, the obligation of the field is to give users gain 
in daily life as soon as technology allows it [42,286]. 
Neuroethics is important here. Hardware advances ease 
the technical constraints making neural data ever easier 
to gather and use.

With the entry of industry in this field, the question 
of the role of academia becomes more important, where 
academia is better equipped to ask fundamental 
(hypothesis based) questions of neuroscience. 
Development is important but is not easy to publish. 
Mainly, academia investigates (hardware agnostic) 
decoding principles.

A good example of the input of academic expertise is 
seen in the use of cortical ECoG recordings as part of 
essential tremor DBS therapy [61]. This cross-field input 
produced knowledge on biomarkers both for funda-
mental questions and treatment efficacy. Here, user 
needs for individualized therapy, reduction of side 

effects [324], and increased battery life were addressed. 
The research triggered a new hardware design that 
reduced stimulation artifacts.

Therefore, academia provides design input (user 
needs, technical requirements, decoding principles) for 
future neurotechnology for home use. Academia seeks 
to create knowledge, optimize designs, and provide 
a foundation of information that can support transla-
tion of BCI to commercial availability. We have also 
identified barriers that must be overcome for home use 
(wireless link, power constraints, limits on the number 
of electrodes, portability, larger scale manufacturing). 
Overcoming these barriers requires more time and 
money than academia has, but the generation of this 
knowledge by academic reduces the risk for industry 
and thus advances the likelihood that BCI will become 
widely, commercially available.

4.4. Next steps for practically useful BCI ethics

Organizer: Brendan Allison (UC San Diego)
Additional Presenters: Pim Haselager (Radboud 

University Nijmegen), Dr. Sonja Kleih-Dahms, 
(University of Würzburg), Donatella Mattia 
(Fondazione Santa Lucia, IRCCS)

This workshop was designed not for review or 
abstract academic discourse, but to develop practical 
next steps for BCI-related ethical issues. The organizers 
briefly presented examples of these issues [325–329] to 
promote discussion.

A public database of ethical use cases was proposed to 
raise awareness with an associated forum where people 
could share their perspectives on each case. The ethical 
use cases could also help professors and others who 
want to teach BCI ethics. Further discussion and devel-
opment of ethical use cases would benefit from an 
ongoing collaborative effort, perhaps via online semi-
nars, to develop a framework, assign people to develop 
different use cases, and create an online database. These 
efforts might be hosted by the BCI Society.

An immediate ethical concern is that research study 
participants do not usually keep the devices used in the 
study. Thus, people with disabilities may regain the 
ability to communicate or control a device with an 
experimental BCI, but then lose that ability when their 
study participation ends. Workshop contributors agreed 
that this is a serious and currently unresolved problem. 
Most funding sources do not support leaving devices 
with patients, nor providing ongoing technical support. 
However, several researchers include such considera-
tions in their research plans. Possible next steps include 
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raising awareness of this problem (such as through an 
online forum, survey, paper, or approaching journalists) 
and further engagement of funding organizations.

The rise of ‘Big BCI’ through the recent initiation of 
BCI projects by high-profile companies creates its own set 
of ethical concerns. Workshop participants desired colla-
boration between the huge companies working on BCIs 
and the existing BCI community on efforts such as an 
online workshop or paper. This step was hoped to foster 
joint work on proposed ethical guidelines and regulatory 
issues.

Another concern comes from the many online arti-
cles and videos with misinformation about BCIs from 
different groups, including some manufacturers, neuro-
feedback practitioners, enthusiasts, and conspiracy the-
orists. Of course, such misinformation will continue 
indefinitely to some extent, but might be reduced 
through next steps such as publicly commenting on 
inaccuracies and producing and promoting high- 
quality information about BCIs. Indeed, some for- 
profit and non-profit entities do provide good BCI con-
tent. The ongoing increase in online BCI-related classes, 
conferences, workshops, competitions, and other activ-
ities has led to ample recorded material from reputable 
organizers and speakers that is usually available for free.

Many participants had seen online postings from, 
and/or been directly contacted by, people who believe 
that they are being involuntarily mind-controlled by 
a BCI or a similar device. A few participants reported 
trying to direct such persons to appropriate mental 
health professionals, but without apparent success. 
Next steps at this time are not obvious aside from 
a possible paper or position statement with suggested 
guidelines, developed with mental health experts.

The workshop focused on specific, actionable next 
steps to raise awareness of ethical issues in BCI and 
further engage relevant groups through workshops, 
papers, online discussions and a database of use cases 
and surveys [330–332].

4.5. Brain–Computer Interfaces for human 
enhancement

Organizer: Davide Valeriani (Neurable Inc.)
Additional Presenters: Riccardo Poli (University of 

Essex), Maryam Shanechi (University of Southern 
California), Hasan Ayaz (Drexel University), Nataliya 
Kosmyna (MIT Media Lab), Yannick Roy 
(NeuroTechX), Marcello Ienca (ETH Zurich)

This workshop highlighted recent advances in BCI 
technologies that go beyond clinical applications and 
instead focus on augmenting human capabilities. The 
workshop brought together neuroscientists, engineers, 

neuro-ethicists, entrepreneurs, and researchers at the 
cutting-edge of BCI development for human augmenta-
tion. Discussion focused on current trends and future 
prospects, as well as the critical role played by interna-
tional communities such as NeuroTechX in educating 
and stimulating interest in BCI and neurotechnologies.

BCIs for cognitive human augmentation are intended 
to improve the process of acquiring knowledge and 
communicating with other individuals [333]. Passive 
BCIs can enhance individual decision-making in target 
detection by recognizing event-related potentials [334] 
or aggregating brain activity from multiple people [335]. 
Collaborative BCIs can also decode decision confidence 
from brain activity and use it to weigh individual opi-
nions, leading to significant improvements in group 
performance in a variety of tasks [336–338]. These 
BCIs can also facilitate human-machine teaming in 
face recognition [339].

Combining brain recording (e.g. EEG, fNIRS) and 
stimulation (e.g. tDCS, TMS) improves processing 
speed [340] and spatial working memory [341], and 
introduces novel communication forms, such as brain- 
to-brain communication [342]. Moreover, it enables the 
development of BCIs capable of regulating abnormal 
mental states, with direct applications in the treatment 
of mental disorders [343,344].

BCIs and other wearables support studying the 
brain in complex environments and diverse domains, 
a research field called neuroergonomics [345]. 
Advances in recording technologies, such as EEG 
and fNIRS, enable study in operational and realistic 
settings to monitor cognitive function, improve 
human-to-human communication, and enhance 
human-machine interaction [346]. Moreover, the 
integration of brain recordings with other physiolo-
gical signals can provide biofeedback to users 
through audio, light, or haptic inputs, promoting 
performance, attention, and overall well-being 
[347]. These hybrid, multimodal BCIs will also help 
increase the reliability, accuracy, and commercial 
potential of non-invasive BCIs, which can be limited 
by the low signal-to-noise ratio of non-invasive 
neural recordings. Yet to implement multimodal 
BCIs we need to identify relationships between mod-
alities and develop new techniques to integrate 
neural recordings at different scales.

While neuroscience and neuro-engineering have 
shown that it is technically possible to develop BCIs 
that augment human capabilities in a variety of 
domains, neuro-ethicists are working to identify which 
applications are morally desirable [317]. Two main ethi-
cal principles should guide the development of BCIs for 
human augmentation: (1) cognitive liberty, which 
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protects the rights of individuals to make free and com-
petent decisions on using such devices, and (2) fair and 
equitable access to enhancement, which ensures they are 
available to everyone, regardless of race, gender, or 
socioeconomic status. As with all biomedical devices, 
safety, and data privacy are key pillars to make these 
devices ethically acceptable.

Overall, the workshop showcased the tremendous 
advantages of expanding BCIs from assistive devices to 
technologies for human enhancement, with a variety of 
potential applications. The most promising approaches 
seem to be the fusion of different physiological signals 
and integration with artificial intelligence, with 
a continuous awareness of the ethical challenges of 
enhancement applications.

4.6. Brain–Computer Interfaces for outside the lab: 
neuroergonomics for human-computer interaction, 
education, and sport

Organizers: Antonia Thelen (eemagine Medical Imaging 
Solutions GmbH, Berlin, Germany) 

Additional Presenters: Fabien Lotte, (Inria Bordeaux 
Sud-Ouest); Camille Jeunet (CNRS, Bordeaux 
Neurocampus); Frédéric Dehais (ISAE-SUPAERO, 
Toulouse); Patrique Fiedler (TU Ilmenau, Ilmenau); 
Martijn Schreuder (ANT-Neuro, Enschede)

Traditionally, BCI research has been bound to the 
investigation of perceptual, cognitive and motor pro-
cesses within stationary, hardware-intensive laboratory 
setups. While these studies provide intriguing real-time 
insights into such processes, the translation of these 
findings into real-world brain interactions is limited. 
The emergence of lightweight, high-density EEG solu-
tions has permitted the extension of BCI applications 
into mobile setups within real-world situations. Use of 
high-density EEG enables the simultaneous utilization 
of different sensor configurations, providing greater 
adaptability with a single hardware setup.

This workshop focused on the efforts undertaken 
toward the instrumentalization of EEG and specifically 
BCI techniques within the field of neuroergonomics. 
The panel comprised experts who strove to provide 
methodological strategies to facilitate the transition of 
BCI applications into real-world and/or every-day set-
tings. First, advances and current limitations of existing 
solutions were discussed. Second, an outlook upon pos-
sible new technological and methodological innovations 
was presented which could provide new avenues of 
interacting with the world by implementing systems 
with an explicit awareness of the concepts of embodied 
cognition. Embodied cognition, as described in [348], 
acknowledges that physical elements of the world are 

often integrated seamlessly into our cognitive processes 
in a way not easily captured by static diagrams with 
separate boxes for sensory inputs and physical outputs. 
Instead, cognition happens in conjunction and in par-
allel with the sensorimotor loops that provide interac-
tions with the world. Various neuroergonomics 
applications of BCI use outside the lab were also dis-
cussed, including evaluating 3D User Interfaces [349], 
Sport Science [350,351] and Aviation [352].

Specifically, the robustness of signal processing 
methods used by BCI classifiers was discussed. How 
to apply such algorithms reliably across a large vari-
ety of application fields and how to make them cope 
with inter- and intra-individual variability is still 
a topic under investigation [353]. The contribution 
of state-of-the-art, lightweight, dry sensors resulting 
in varying signal-to-noise ratios and their impact 
upon such signal processing algorithms was high-
lighted [354,355]. Moreover, the tradeoff between 
laboratory-based and real-world applications was dis-
cussed with regard to sensor application within these 
fundamentally different environments [351,356]. 
Finally, discussion focused on difficulties encoun-
tered when translating BCI-based interventions 
across different demographics, specifically differences 
in cognitive states and/or perceptual processes that 
were investigated within a research context or 
focused on clinical/therapeutic interventions.

Taken together, the workshop provided an overview 
of current advances made within the field of 
neuroergonomics.

4.7. Brain–Computer Interfaces for art, 
entertainment, and domestic applications

Organizer: Anton Nijholt (University of Twente)
Additional Presenters: Christoph Guger (g;tec medi-

cal engineering GmbH); Elisabeth Hildt (Illinois 
Institute of Technology); Erika Mondria (University of 
Art and Design); Ellen Pearlman (Massachusetts 
Institute of Technology); Stephanie Scott (Colorado 
State University); Aleksander Valjamae (Tallinn 
University)

BCI technology enables neurophysiological data 
from an individual user’s affective and mental state to 
be used for online adaption of system and interaction 
methods [357]. Artistic, domestic, or entertainment use 
of such information shift the focus from efficiency to the 
importance of affect in social and playful interactions 
such as in family, community, playful, and artistically 
challenging situations. This workshop addressed the use 
of BCI for artistic, entertainment, educational, and 
health applications.
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BCI has been used for many artistic applications 
[358–360]. In general, artistic projects reduce inhibi-
tions and encourage people to engage with unfamiliar 
technologies such as BCI. Synergies of design, art, and 
research have shown interesting results, which may also 
enrich clinical settings.

BCIs have been used for creative arts therapy 
[361,362] as part of a conceptual framework bringing 
together several disciplines for researching the expan-
sion of treatment modalities in the intersection of art, 
technology, and therapeutics. A recent insight is that 
a post-phenomenological approach toward human- 
technology interaction and technological artifacts in 
general will be useful when applied to BCI for therapy, 
art, and creative expression. In this approach, user- 
specific needs for enabling self-expression are integrated 
in a transdisciplinary design perspective on meaningful 
and self-expressive communication exploring brain 
activity underlying artistic creation and using neuro-
feedback research [363].

The BR41N.IO BCI Hackathon series, now in its 
5th year [364,365], provides opportunities for team- 
based development of new BCI applications within 
24 hours. During the 2021 BCI & Neurotechnology 
Spring School, 321 developers, artists, programmers, 
and hackers participated in 38 teams and created 
many interesting and cutting-edge new applications or 
improved the signal processing of BCI data sets.

In neurotheatre and neurocinema research [366,367], 
new media art and neurotechnologies allow for co- 
creation between actors, director, and audience to 
shape a performance by emotional experiences using 
BCI and other sensors and multisensory actuators. 
From a research perspective, neurotheatre can be seen 
as a novel integrative research environment for proto-
typing and exploring new social neuroscience para-
digms, like collective decision-making or shared 
affective experiences. From a societal perspective, the 
fusion of science, technology, and arts allows for so- 
called design fiction, a design practice aiming at explor-
ing and criticizing possible futures by creating specula-
tive, and often provocative, scenarios narrated through 
designed artifacts.

Affective brain-computer music [368,369] Interface 
applications use affective BCIs for music-making and 
music listening. Given recent developments in direct-to- 
consumer devices (wearable BCIs, headphone sensors) 
and music streaming services these BCI applications aim 
at influencing the user’s affective state (mood enhance-
ment) by individualized music choices. Exaggerated 
claims about capabilities, increasing dependency on 
technology and limiting one’s own capabilities, and 

privacy issues arising from long-term monitoring of 
a user’s affective state are pitfalls related to a potential 
future, relatively widespread use of EEG-based affective 
brain-computer music interfaces in entertainment con-
texts [370].

A brain opera called ‘Noor’ provides an example that 
combines these concepts through the use of artificial 
intelligence (AI). In ‘Noor’, biometric variables, includ-
ing BCI are integrated with natural language processing 
and machine learning. In the near-future, such inte-
grated systems will be tasked with more responsibilities 
relating to many aspects of human congress, often with 
confusing legal oversight and minimal accountability, 
potentially leading to scenarios enforcing dystopic digi-
tal societies of control [371–373].

The workshop discussions revealed consensus about 
the benefit of the joint effort of art and science research 
for BCI research in general and the acceptance of BCI 
for the general public.

5. Conclusion

Together, these workshops provide foundational infor-
mation, explore diverse applications for different popu-
lations, and further develop big picture ideas for new 
frontiers of BCI use. Many of these ideas will be further 
developed in the workshops of the planned in-person 
Ninth International Brain–Computer Interface 
Meeting, currently scheduled for the summer of 2023 
in the Sonian Forest, Brussels, Belgium.
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