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The 2020’s decade will likely witness an unprecedented development and

deployment of neurotechnologies for human rehabilitation, personalized use,

and cognitive or other enhancement. New materials and algorithms are

already enabling active brain monitoring and are allowing the development

of biohybrid and neuromorphic systems that can adapt to the brain. Novel

brain-computer interfaces (BCIs) have been proposed to tackle a variety of

enhancement and therapeutic challenges, from improving decision-making to

modulating mood disorders. While these BCIs have generally been developed

in an open-loop modality to optimize their internal neural decoders, this

decade will increasingly witness their validation in closed-loop systems that

are able to continuously adapt to the user’s mental states. Therefore, a

proactive ethical approach is needed to ensure that these new technological

developments go hand in hand with the development of a sound ethical

framework. In this perspective article, we summarize recent developments in

neural interfaces, ranging from neurohybrid synapses to closed-loop BCIs, and

thereby identify the most promising macro-trends in BCI research, such as

simulating vs. interfacing the brain, brain recording vs. brain stimulation, and

hardware vs. software technology. Particular attention is devoted to central

nervous system interfaces, especially those with application in healthcare

and human enhancement. Finally, we critically assess the possible futures

of neural interfacing and analyze the short- and long-term implications of

such neurotechnologies.
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Macro-trends in neurotechnology development

Neurotechnology is an umbrella term used to refer to the broad spectrum of

tools, systems, applications, and methods that can be used to read or influence brain

structure, function, or activity in humans. While the utilization of one single term to

denote this broad technological spectrum may provide semantic parsimony, identifying

the main trends within neurotechnology development is crucial as different kinds of

neurotechnologies may have different clinical applicability and thereby raise different

ethical and policy questions. In this section, we identify three key conceptual distinctions,

namely, interfacing vs. simulating the brain, neural recording vs. brain stimulation, and

hardware vs. software in neurotechnology.
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Interfacing vs. simulating the brain

The design of neural interfaces first requires the

identification of brain patterns that could be used to control

an actuator, such as an arm prosthesis. This process can

be approached in essentially two ways, namely, by directly

measuring brain activity at different spatial and temporal

resolutions, at rest or during the production of a task, or by

simulating brain activity through mathematical modeling.

The classic approach is direct interfacing with the brain,

which allows us to capture brain activity in real time. This

approach has played a key role in advancing our understanding

of brain function. This approach comes at a cost, as it requires

(a) a technology to measure brain activity, which may have to be

implanted, with associated costs and risks, and usually provides

only a measurement scale; (b) a brain from which to measure it,

human or animal, with all the associated ethical problems.

The increasing availability of neural data (Ienca et al.,

2018a) combined with advances in mathematical modeling

and machine learning is changing the way we investigate

neuroscientific hypotheses. Simulation neuroscience is a

new paradigm of brain research that aims at building a

comprehensive digital model or copy of the brain (Fan and

Markram, 2019). This approach has multiple advantages over

traditional experimental neuroscience. Although it requires

high computational power, it reduces overall experimental costs

and alleviates ethical concerns associated with both animal and

human experimentation compared with conventional research

(Romeni et al., 2020). Moreover, it allows the simultaneous

study of brain function at different scales (multi-scalar) and

modes (multi-modal research). To date, researchers have been

able to simulate the activity of some parts of the brain, such as

the sensory cortex (Markram et al., 2015; Yamins and DiCarlo,

2016), the motor cortex (Pandarinath et al., 2018), the temporal

cortex (Cadieu et al., 2014), and the visual cortex (Lindsay,

2020).

The next decade will likely be characterized by increased

efforts in system simulation neuroscience, where different models

will be integrated to progressively simulate the entire central

nervous system. However, it is improbable to achieve such

an ambitious goal by the end of the current decade. The

integration process alone will require enormous effort to adapt

individual models and will implicate in turn a wide range of

other challenges to overcome (Makin, 2019).

Neural recordings vs. brain stimulation

Just as humans combine the ability to read with the ability

to write, brain-computer interfaces (BCIs) could also work by

recording (“reading” in a metaphorical sense) brain activity

or by stimulating (aka writing) the brain. Neural recordings

could be obtained with a number of invasive or noninvasive

methodologies, such as electroencephalography (EEG) and

electrocorticography (ECoG). In all these circumstances, the

BCI could only influence brain activity indirectly, that is, by

modifying sensory stimuli, such as visual stimuli. Common BCIs

based on neural recordings are spellers (Rezeika et al., 2018), as

they generally use visual stimuli to elicit strong brain activity

patterns and convert those brain signals into a letter to type

on an interface. Conversely, brain stimulation allows the BCI

to directly activate or inhibit certain brain areas via electrical

stimulation. This leads to enhancements in human performance,

for example, increasing vigilance (Nelson et al., 2014), reducing

fatigue (McIntire et al., 2017), or increasing task performance

(Nelson et al., 2015).

Most BCI systems employ only one interfacing modality:

they either read from or write into the brain. However, in

recent years, we have seen a few applications of bimodal

BCIs, using multiple techniques to both record and stimulate

the brain (McKendrick et al., 2015). These approaches will

gradually become the new norm in the next few years, as brain

stimulation combined with neural recordings enables next-

generation applications of BCIs, such as direct communication

between brains (O’Doherty et al., 2011).

Software vs. hardware development

Advances in software technology were among the most

significant developments in neural interfaces that we witnessed

in the 2010’s decade. New signal processing techniques, paired

with a better understanding of both brain structure and function,

allow to increase the signal-to-noise ratio of neural recordings

and thereby to precisely measure brain activity against the

noise. This progress may soon enable noninvasive BCIs to

perform similarly to invasive ones, hence reducing health risks

and financial costs for the patient. Moreover, advancements in

machine learning and, particularly, deep learning have allowed

neuroscientists to uncover novel brain features and build more

complex classification models to handle highly dimensional

input data (Craik et al., 2019; Roy et al., 2019).

Open-source software tools have also been instrumental

in making these advances in signal processing and machine

learning directly available to researchers and end-users. Among

those, EEGLAB (Delorme and Makeig, 2004), OpenViBE

(Renard et al., 2010), BCI2000 (Schalk et al., 2004), and MNE

(Gramfort et al., 2014) are used daily in hundreds of research

labs and neurotechnology companies around the world to speed

up analysis and BCI prototyping.

Progress in hardware development has been much slower

compared with software technology because of the high costs

and time required for prototype development (Stieglitz et al.,

2009). The Utah array was groundbreaking because it allowed

the recording of large populations of neurons with a signal-to-

noise ratio high enough to allow the development of BCIs for
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precise control (Maynard et al., 1997). Nevertheless, 25 years

after its introduction, it is still the gold standard for this type

of invasive brain recording. The majority of noninvasive BCIs

still rely on EEG to record brain activity, a technology that was

introduced about a century ago. That being said, one of the most

promising developments in the brain recording area involves the

gradual transition from wet to dry electrodes, which are cheaper

and faster to set up and provide comparable measurements

to wet sensors (Kam et al., 2019). Crucial progress has also

been made in miniaturizing electronic components to build

more powerful, efficient, and cheaper processing boards that

provide the high computational power required for advanced

neural interfaces.

Similar to open-source software, open hardware initiatives

have also been instrumental in pushing innovation in electrical

circuits for neural interfaces. In the BCI industry, such as

OpenBCI and several BCI research labs (Rakhmatulin et al.,

2021), have demonstrated how to build low-cost BCIs with

consumer electrical components.

Recent advances in neural
interfacing

Among the various trends in neurotechnology, neural

interfacing is of particular scientific, clinical, and ethical

significance. Neural interfaces are devices that interact with the

nervous system. In the following, we will articulate two main

trends in neural interfacing, namely, neuroadaptive technologies

and neurohybrid interfaces.

Neuroadaptive technologies

The development of BCIs usually involves three steps

(Figure 1). First, the identification of strong patterns in neural

activity that could be used to control the device. This

stage involves the development of well-controlled laboratory

experiments to ensure that patterns are present between subjects

and experimental sessions. When such patterns are validated,

open-loop BCIs are developed. These are systems in which

similar patterns are tested in more realistic settings, but in which

the user receives no feedback from the BCI (Shanechi, 2019).

After optimizing the parameters of open-loop BCIs, the last

step is to close the loop, providing the BCI with the ability to

update its internal parameters in real time and adapt to the user’s

mental state. These neuroadaptive BCIs (Zander et al., 2016) are

the most challenging to implement, but they are the ones that

promise to provide the most seemingless user interaction.

The last decade has experienced exponential growth of open-

loop BCIs in various domains, from traditional spellers for the

disabled (Rezeika et al., 2018) to human enhancement (Cinel

et al., 2019). For example, BCIs have been developed to decode

our degree of confidence during decision-making and assist us

to make better decisions in groups (Valeriani et al., 2017a).

Closed-loop BCIs have also been investigated, although to a

lesser extent. For example, a BCI regulating arousal via auditory

neurofeedback was developed in a flight simulator (Faller

et al., 2019). Recent research has also enabled the possibility

of developing closed-loop BCIs for therapeutic purposes, from

controlling epileptic seizures (Maksimenko et al., 2017) to

restoring lost emotional function in neuropsychiatric disorders

(Shanechi, 2019).

Neurohybrid interfaces

Closed-loop interfaces require optimal neuro-inspired

functionalities (i.e., plasticity), as well as efficient power

consumption and connectivity, similar to what happens in

the neuronal tissue. In fact, the new generation BCIs and

neuroelectronic platforms ultimately should resemble both

the physical and electronic architectures and features of

neuronal cells (Lubrano et al., 2020). While neuronal tissue

engineering has greatly advanced in reconstituting biological

neuronal networks from the single cell to scaffold-based tissue

architectures, these platforms can be optimized in vitro and

potentially be implanted in vivo to form functional connections

over time.

On the contrary, electronicmicrodevices have been shown to

be ideal platforms for both electrophysiology and stimulation to

investigate and eventually restore lost electrical functionalities.

Electrode-based solutions for deep brain stimulation have been

demonstrated to achieve even profound areas of the brain

and significantly affect the electrical activity of the neuronal

tissue (Lozano et al., 2019). This is extremely relevant in

neurodegenerative pathologies, such as Parkinson’s disease,

where implantable BCIs can successfully overcome major

symptoms like tremor that massively affect a patient’s daily

life (Pulliam et al., 2020). However, these BCIs are mainly

passive and lack local computing resources that can adequately

contribute to a closed-loop (control).

In this scenario, neuromorphic platforms are emerging as

the new frontier of BCIs as they resemble (neuro)electronic

functions, such as short- and long-term potentiation and

depression (Ham et al., 2021). Serving as key hardware for

artificial neural networks, platforms like SpiNNaker, TrueNorth,

and Loihi support closed-loop computing with low power

consumption and miniaturized devices. For example, spiking

neural networks have been used to continuously monitor brain

activity and detect epileptic high-frequency oscillations with a

low-power wearable device, paving the way to cheaper and less

invasive epileptic monitoring (Burelo et al., 2022). Nevertheless,

despite being low power, these neuromorphic platforms can

do enough computations to accurately decode brain patterns
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FIGURE 1

Stage of development of a BCI.

typically associated with BCI paradigms, such as motor imagery

(Behrenbeck et al., 2019).

In the attempt of creating optimal implantable BCIs for

sensing and stimulating target brain areas, a major challenge is to

pinpoint the tissue-device coupling to ensure a stable connection

over time. This is strongly dependent on the engagement of

the devices at the single-cell level, where the bidirectional

communication and the physical interaction between the

artificial and the biological counterparts are taking place.

Traditional platforms are based on metals and

semiconductors that assemble in typical transistor-based

devices required for operation with high electrical potentials,

which differ in orders of magnitude from those of biological

neurons. Moreover, it is highly demanding to extend the

production of these devices to more conforming and flexible

BCIs, which are required to physically couple the soft

neuronal tissue (Jeong et al., 2020). In this scenario, organic

neuromorphic platforms recently arose as tools to directly

interface biological and artificial neurons to form functional

biohybrid synaptic connections (Keene et al., 2020). Based

on biocompatible organic semiconductors, these devices

are capable of mixed ionic-electronic (trans)conduction

that very accurately resembles the complexity of the

neuronal electrochemical environment in which the neuronal

bidirectional communication takes place (Burelo et al., 2022).

Furthermore, their long-term potentiation and short-term

depression (Tuchman et al., 2020) have been exploited to

ultimately interface robotic actuators to comply with basic tasks

in a closed-loop manner (Krauhausen et al., 2021).

In summary, neuromorphic platforms represent one of the

most promising avenues of research to develop next-generation

BCIs that seamlessly integrate with the human brain and require

less power to operate.

Proactive ethics for neural interfaces

Ethical reflections are inherent to neuroscience and

neurotechnology since their very beginnings. This is due to the

human brain being the fundamental site of life-maintaining

functions (e.g., respiration), as well as mental faculties and

processes, such as consciousness, memory, and perception.

Therefore, the prospect of reading out from and/or writing

into the brain raises the challenge of, respectively, revealing

and influencing mental faculties and processes in a more direct

manner compared with any other technology.

Since the 1990’s, two fields of normative reflection

on neuroscience and neurotechnology have arized, namely,

neuroethics and neurolaw; the former focuses on ethical

challenges, while the latter focuses on legal ones. Historically,

the mainstream approach to ethical and legal assessments in

neurotechnology has been reactive in character: reacting to

the past (e.g., previously developed neurotechnological systems)

and solving matters as they arise. The advantage of reactive

approaches to the ethics of neurotechnology is that they

allow ethicists and engineers to optimize their efforts and

focus on concrete problems rather than on the anticipation

of possible future scenarios that are often hard to foresee.

However, reactive approaches–if pursued alone–present several

disadvantages. First, they are structurally postdated since they

provide ethical advice only at the post-development level, i.e.,

at a stage when there is less or no room for modification

of a neurotechnology system. Second, in several domains of

cognitive and physical disability, the lack of proactive ethical

and social considerations has been inferred as a determinant

of low adoption and acceptance of technology (Ienca et al.,

2018c). In fact, if the impact of ethically relevant factors

is not anticipated, products might not match the end-users’

needs and wishes, hence resulting in sub-optimal uptake,

implementation lag, and delayed clinical or social benefit. Third,

there is a risk that lack of proactive ethical considerations

may cause negative public perceptions or even unjustified

anti-technological Luddite fears among end-users, caregivers,

and other relevant stakeholders. This risk is particularly

concrete in relation to advanced technologies, such as those

that incorporate or embed artificial intelligence (AI), as their

underlying mechanisms and functionalities are often unclear

to users. Finally, reactive approaches are a possible source of

antagonism and conflict between designers and developers, on

the one hand, and ethicists and policymakers, on the other hand,

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2022.953968
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Valeriani et al. 10.3389/fnbot.2022.953968

as, in a reactive context, the work of the former professionals is

being constantly questioned and judged by the latter.

In the light of the analysis presented above, we argue that

a proactive ethical approach is best suited to anticipate the

ethical challenges of neural interfaces and to ensure the ethical

assessment of emerging neurotechnologies. In fact, in proactive

assessment, ethical matters are addressed before they become an

issue. This requires a foresight-oriented approach that focuses

not only on short-term issues but also on long-term issues.

Further, it requires an evidence-driven exploration of expected

and alternative futures and guiding futures to inform strategy.

Clarifying the time scale of proactive ethical assessments is of

utmost importance as it is necessary to avoid policy confusion

based on unrealistic expectations or conflation of the time scale

of neurotechnology development.

The next decade of neurotechnology

Aswe have seen earlier, in the past few decades, neuroscience

has broadly focused on expanding our understanding and

knowledge of the human brain. In parallel, engineering has

focused on innovation in hardware and software to increase

the amount of information we can gather from the brain.

The next decade will likely be focused on the integration of

these advancements in science and engineering to build novel

neurotechnologies that will improve our lives. In this section, we

discuss what we consider the most promising ones.

Doctors 2.0

The combination of brain imaging with machine learning

allows the development of decision-support systems that can

help clinicians diagnose and treat neurological disorders. For

example, ad hoc deep learningmodels can quickly and accurately

diagnose a variety of brain disorders, including Parkinson’s

disease (Oh et al., 2020), Alzheimer’s disease (Liu et al., 2014; Suk

and Shen, 2015), epilepsy (Khan et al., 2021), dystonia (Valeriani

and Simonyan, 2020), brain cancer (Tandel et al., 2019), and

cerebral palsy (Zhu et al., 2021). Neurotechnologies will be more

and more integrated in the clinics to help reduce the workload

of clinicians and improve diagnostic accuracy.

In addition to augmenting diagnosis, neurotechnologies

can also represent a novel treatment for brain disorders. For

example, patients with epilepsy can currently be implanted with

responsive neurostimulation technologies (NeuroPace, Inc.) that

detect seizure onsets by continuously monitoring brain activity.

When seizure-like activity is detected, the device automatically

starts stimulating the brain by injecting small amounts of

electrical current to stop or shorten the seizure. Several studies

have shown that this technique reduces seizure occurrence

by over 50% (Agostini et al., 2019; Krucoff et al., 2021).

Neuromodulation represents the golden standard treatment

for several other neurological disorders, including Parkinson’s

disease (Andrews, 2010). Integrated neurotechnologies capable

of adjusting brain stimulation parameters in real time while

monitoring brain activity represent the most promising

technology for the clinical treatment of neurological disorders.

Synthetic memory

Advancements in understanding how information is

encoded in the brain allow the development of artificial

decoders of individual memories (Rissman et al., 2010). These

neurotechnologies can facilitate memory retrieval and improve

how information is organized in the brain. For example, they

can be used for helping eyewitnesses recall relevant memories

before a trial, hence having a direct impact on policy (Vedder

and Klaming, 2010).

Neurotechnologies can also help us overcome the limitations

of our memory. For example, visual short-term memory has a

limited item and information capacity (Sewell et al., 2014). The

development of artificial memory leveraging the knowledge on

encoding capabilities of the brain will allow us to restore (Berger

et al., 2011) or even extend our memory capabilities (Garner

et al., 2012; Vetere et al., 2019).

Optimized communication

Brain-computer interfaces were invented to restore

communication capabilities in people with severe disabilities

(Wolpaw et al., 2002). For example, the P300 speller was

designed to allow patients to type sentences on a computer

screen using their brain activity, one character at a time (Farwell

and Donchin, 1988).

This technology can then be paired with speech synthesizers

to restore speech capabilities. Since their inception, BCIs for

speech decoding have evolved at a fast pace, and current

research suggests that we may be able to decode full sentences

from minimally invasive brain recordings (Herff et al., 2019;

Chang and Anumanchipalli, 2020; Makin et al., 2020; Angrick

et al., 2021). This progress would not only make these devices

broadly used as prosthesis for speech restoration for people with

disabilities but also enable novel forms of communication that

are more respectful of privacy, such as silent-speech interfaces

(Denby et al., 2010).

Neurally integrated prosthesis

A neurally controlled prosthesis is an artificial device

replacing or enhancing a missing or impaired part of the

body that is controlled by the nervous system of the
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user. Traditionally, these prostheses are controlled using

electromyography (EMG) signals, which are picked up by

electrodes placed over the peripheral muscle attached to the

prosthesis. The rationale behind this approach is that EMG

signals have a higher signal-to-noise ratio than signals captured

from the brain and, so, are easier to process. However, an

EMG-based prosthesis typically operates using residual muscles

that do not convey full information about the movement to be

performed. For example, a hand prosthesis often uses biceps and

triceps EMG activity, which does not carry information about

the opening or closing position of the hand (Parajuli et al., 2019).

The next generation of neurally controlled prosthesis will

instead capture the detailed motor intent of the user from the

brain activity (Nazarpour, 2020; Vilela and Hochberg, 2020).

This will broaden the degrees of freedom of prostheses and boost

control and integration with the human body. Current neural

prostheses (Gilja et al., 2012, 2015) suffer from limited speed

and control accuracy, which may be enhanced by the advances

in software and hardware promised for the next decade, as well

as more hybrid BCI approaches, which combine multimodal

signals (e.g., EEG and EMG) or multiple BCI paradigms (e.g.,

P300 and SSVEP) to enhance the signal to noise ratio (Leeb et al.,

2011; Li et al., 2013; Lin et al., 2016).

Advancements in neurally integrated prosthesis will also

facilitate the use of BCIs for rehabilitation purposes. Several

studies have shown the potential of BCIs in helping patients

regain motor control after severe conditions, such as stroke

(López-Larraz et al., 2018;Mane et al., 2020) ormultiple sclerosis

(Carrere et al., 2021). These effects are possible because BCIs can

bypass the impaired neuromotor system and (re)train patients

to gain control of the limbs (Robinson et al., 2021). The next

decade will represent a unique opportunity to conduct large-

scale clinical trials to prove the impact of neurally controlled

prosthesis for effective motor rehabilitation.

Augmenting intelligence and cognition

Another very promising area of application of

neurotechnologies is cognitive augmentation (Cinel et al.,

2019). This pertains to increasing human performance in

higher-order brain functions, such as reasoning and decision-

making. Often referred to as passive BCIs (Zander and Kothe,

2011), these neurotechnologies monitor brain activity and

aid the user to gain insights into their cognitive function. For

example, BCIs can be used to decode the decision made by a

user (Luu and Chau, 2009; Tzovara et al., 2015) or to estimate

how confident the user was in a decision (Poli et al., 2014),

enabling groups to decide based on the most reliable members

and boost their performance (Valeriani et al., 2017a,b).

The development of neurotechnologies to augment

cognitive function will also accelerate the integration between

humans and machines (Gao et al., 2021). While AI already

masters tasks requiring heavy computations, such as the

game of Go (Silver et al., 2017), humans still remain more

accurate than AIs in tasks requiring reasoning and high-level

computations. Yet, future neurotechnologies can help build

human-AI teams that correct individual weaknesses and

effectively augment human capabilities. For example, early

results in face recognition suggest that these teams may perform

more accurately than humans or AI alone (Valeriani and Poli,

2019).

Putting all together: Everyday
neurotechnology

Similar to general AI, i.e., artificial intelligence capable

of performing multiple tasks and adapting to a changing

environment, neurotechnology will also benefit from

advancements in generalization techniques that would allow

them to augment different human capabilities. These everyday

neurotechnologies will be our new companions, helping us with

our daily routine, from controlling external devices (e.g., light

switches and smartphones) with our mind to monitoring our

attentional level at work to increase productivity.

Everyday neurotechnology will add new constraints to

neurotechnology development, including appearance, cost,

setup procedure, risks, availability, and ethical considerations.

This integration process among multiple neural technologies, as

well as additional requirements, will likely extend development

to over one decade. Nevertheless, the current effort of

several industries and academic players in pushing this

endeavor makes us believe we will still be able to see

the first integrated prototypes of everyday neurotechnology

by 2030.

Preparing the ethical future of
neurotechnology

A crucial problem in ethics and technology assessment

is clearly specifying the foreseeable time frame of the

technological capabilities that may generate ethical and

societal concerns. As stated in the Collingridge Dilemma,

ethics assessment and technology regulation efforts face a

double-bind problem. On the one hand, the impacts of

technology cannot be easily predicted until the technology

is extensively developed and widely used. On the other

hand, control or change is difficult when the impact can

be reliably predicted because the technology has become

entrenched. Therefore, the challenge of proactive ethics with

regard to neurotechnology consists in providing evidence-

based impact assessment before neurotechnology becomes

entrenched, hence immune to regulatory control or change.

Reliably specifying a foreseeable time frame has a twofold
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TABLE 1 Foresight map of neurotechnology-related ethical and societal risks.

Issue Description References

Time frame: Present

Neurosecurity Security vulnerabilities of neurodevices and neurotech-related datasets Ienca and Haselager, 2016; Pugh et al., 2018;

Rickli and Ienca, 2021

Algorithmic bias Bias in AI algorithms embedded in neurodevices or used in analytics Yuste et al., 2017; Schleidgen et al., 2022;

Webb et al., 2022

Neurohype Inflated and unrealistic marketing claims by neurotechnology companies,

such as mental relaxation and cognitive enhancement

Purcell-Davis, 2013; Wexler and Reiner, 2019

Off-target effects of

neurostimulation

Unintended collateral effects of neurostimulation. Mantione et al., 2014; Bluhm and Cabrera,

2022

Suboptimal models of

neurotechnology development

Lack of standards for user-centered and neurophenomenological

considerations

Kögel et al., 2019; Meyer et al., 2021;

Pfotenhauer et al., 2021

Dual-use of neurotechnology Military research on neurotechnology and cooptation of civilian

neurotechnology for non-peaceful aims

Tennison and Moreno, 2012; Ienca et al.,

2018b

Time frame: Short-term (by 2025)

Mental privacy violations in the

broad sense

The drawing of privacy-sensitive inferences from brain data which is

exacerbated by (a) the increasing prevalence of consumer neurotechnology

devices, (b) the associated availability of brain-related datasets, (c) machine

learning (especially DL) algorithms from predictive/retrospective analysis

via reverse inference

Ienca et al., 2018a; Minielly et al., 2020; Ienca

and Malgieri, 2022

Neurodiscrimination Risk of discrimination based on neuroanatomical or neurofunctional traits

revealed by neurotechnology

Ienca and Ignatiadis, 2020

Time frame: Mid-term (by 2030)

Neurographic profiling Discriminatory profiling of individual and groups based on neurological

characteristics (analogous to psychographic profiling)

Schleidgen et al., 2022

Neurowarfare Weaponization of neurotechnology for offensive warfare and systematic

utilization of military neurotechnology in armed conflicts

Tennison and Moreno, 2012; Ienca et al.,

2018b; Rickli and Ienca, 2021

Cognitive enhancement Neurotechnologies used for extra-medical augmentation of cognitive

functions raise challenges for fairness and equality

Roelfsema et al., 2018; Cinel et al., 2019

On-target effects of

neurostimulation

Targeted modification of psychological and/or behavioral traits for

non-medical reasons

Ienca and Andorno, 2017

Time frame: Long-term (by 2040)

Mental privacy violations in the

narrow sense

Unveiling of semantic or visual content of mental states via

neurotechnology and brain-data analytics

Haynes, 2011; Shen, 2013; Ienca and

Andorno, 2017

benefit. On the one hand, it can prevent the emergence of

fear-mongering narratives related to potential neurotechnology-

related harms that may not materialize for decades. On the

other hand, it may prevent the postponement of much-

needed ethical compliance and regulatory intervention whose

implementationmay be delayed due to the erroneous perception

that concrete technology-induced harms are rather far-

fetched.

To deliver this twofold benefit, we propose a foresight map

that classifies ethical and societal risks based on the time frame in

which they are expected to emerge and generate societal concern

(see Table 1).
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