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Abstract
The Tenth International brain–computer interface (BCI) meeting was held June 6–9, 2023, in the
Sonian Forest in Brussels, Belgium. At that meeting, 21 master classes, organized by the BCI
Society’s Postdoc & Student Committee, supported the Society’s goal of fostering learning
opportunities and meaningful interactions for trainees in BCI-related fields. Master classes provide
an informal environment where senior researchers can give constructive feedback to the trainee on
their chosen and specific pursuit. The topics of the master classes span the whole gamut of BCI
research and techniques. These include data acquisition, neural decoding and analysis, invasive and
noninvasive stimulation, and ethical and transitional considerations. Additionally, master classes
spotlight innovations in BCI research. Herein, we discuss what was presented within the master
classes by highlighting each trainee and expert researcher, providing relevant background
information and results from each presentation, and summarizing discussion and references for
further study.

Abbreviations

aDBS adaptive deep brain stimulation
AL assistance level
ANN artificial neural network
BRAND Backend for Realtime Asynchronous

Neural Decoding
BCI brain–computer interface
BOTDA backward formulation of optimal

transport for domain adaptation
CMD cognitive-motor dissociation
CNN convolutional neural network
DA data augmentation
DAREPLANE DAta driven REsearch PLatform for

NEurotechnology
DBS deep brain stimulation
DoC disorders of consciousness
ECG electrocardiography
ECoG electrocorticography
EEG electroencephalography
EMG electromyography
EOG electrooculogram
ERD event-related desynchronization
ERP Event-related potential
ErrPs error-related potentials
ERS event-related synchronization
VECoG endovascular electrocorticography
fNIRS functional-near infrared spectroscopy
GR Generic Recentering
HD high density
HFB high frequency band
HFD Higuchi Fractal Dimension
ISPC Inter-site phase clustering
ITR information transfer rate
ICMS Intracortical microstimulation
MEG magnetoencephalography

MI motor imagery
NFT neural field theory
PAR Personally Assisted Recentering
PD Parkinson’s disease
PICU Pediatric Intensive Care Unit
RNN recurrent neural network
sEEG stereo-electroencephalography
SMR sensorimotor rhythm
tDCS transcranial Direct Current

Stimulation
uHD ultra-high density
VR virtual reality

1. Introduction

The Tenth International BCI Meeting provided a
venue for trainees to present and receive feedback for
their work in BCI. This paper is intended to high-
light their work and the innovation occurring in BCI
research.

1.1. Purpose and organization of master classes
The master classes were organized by the Postdoc
& Student Committee of the BCI Society, whose
primary goal is to foster learning and engage-
ment opportunities for trainees. Trainees submitting
abstracts to the BCI Meeting could opt if they would
like to participate in master classes. Abstract selection
is based on evaluations by the Program Committee,
considering reviewers’ scores, diversity, and inclu-
sion. Trainees could submit their abstract under seven
general themes including BCI implant—control, BCI
implant—other, BCI non-implanted—control, BCI
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non-implanted—other, signal acquisition, signal ana-
lysis, and user aspects: experience, ethics, target pop-
ulations. Out of 93 potential candidates for master
classes, 42 trainees (45%) were selected. These train-
ees, along with 14 masters, were organized into 21
master classes. Of the 42 trainees, 34 were graduate
students, 7 were postdoctoral fellows, and 1 was a
medical student. Classes were held in seven parallel
sessions on three separate days of the meeting.

The master classes are meant to promote oppor-
tunities for trainees to showcase their work and to
encourage relaxed interactions with senior members
of their field. Themaster class format is as follows: two
BCI trainees present their work for 10–15 min and
one senior researcher, or master, provides construct-
ive feedback. Additionally, any participant of the BCI
Meetingmay attend amaster class and take part in the
discussion.

The summaries provided by the master class
trainees in this paper create a convenient overview
of the range of topics included in BCI research, and
the challenges current BCI researchers face as they
advance the technology and the field.We have divided
the summaries into eight specific themes: speech
decoding, MI, BCIs for pediatric populations, plat-
forms for closed-loop BCIs, deep learning applica-
tions, neurorehabilitation, sampling for sensorimo-
tor BCIs, and novel BCI techniques for improved per-
formance. For each summary, we report the trainee,
the title of their presentation, the initial theme, and
the master assigned to each class, as shown in table 1.
Each summary introduces the trainee’s presenta-
tion, their preliminary findings, and their conclu-
sions. Note, that ‘we’ within each summary refers
to the trainee and their initial abstract submission
co-authors.

2. Master class themes and summaries

2.1. Speech decoding
In recent years, there has been an influx of research
focused on the potential use of BCIs as augment-
ative and alternative communication devices for
patients with damage or degeneration of speech
motor pathways [1, 2]. Understanding optimal tem-
poral and spatial neural recording resolution, advant-
ages of different recording modalities (e.g. nonin-
vasive or invasive), or decoding strategies are a few
aspects that are critical to the tailoring of speech
BCIs for clinical populations. Additionally, there is
increased interest in decoding covert speech and dis-
cerning the fundamental differences between covert
and overt speech production [3].

2.1.1. Presenter: Julia Berezutskaya, PhD (University
Medical Center, Utrecht, Netherlands)
Title:Optimizing feature selection for word decoding
with high-density ECoG

Master: Sergey Stavisky, PhD (University of
California, Davis, USA)
Theme: Signal analysis
High-accuracy individual word decoding from brain
activity is crucial for the development of speech BCIs
for people who cannot speak due to paralysis [4].
Here, we investigated (a) how accurate word decod-
ing is from brain signals obtained with high-density
ECoG grids, and (b) what neural features are most
informative for high decoding performance. Five sub-
jects participated in a word reading experiment dur-
ing which their brain activity was recorded with high-
density ECoG. There were 12 unique words, and each
word was spoken aloud 10 times. ECoG signals in
alpha (8–12 Hz), beta (13–30 Hz), and (HFB, 70–
170 Hz) were downsampled to 75 Hz and arranged
into word trials using windows from 250 ms prior to
word onset to the length of the longest pronounced
word (about 1.1 s).We used a support vectormachine
classifier with leave-one-out cross validation to test
five feature selection strategies: (1) all electrodes &
alpha, beta, HFB; (2) a subgrid of 32 electrodes &
alpha, beta, HFB; (3) all electrodes & HFB; (4) a sub-
grid of 32 electrodes & HFB; (5) recursive feature
elimination & alpha, beta, HFB.

The best performing algorithm (5) led to an
accuracy of 98%, 87%, 67%, 98%, and 59% for S1, S2,
S3, S4, and S5, respectively (chance is 8%, figure 1(a)).
On average, this accuracy was at least 20% higher
compared to the default strategy of no feature selec-
tion (1). HFB features were most informative for
decoding. Electrodes that contributed to high accur-
acy decoding the most were distributed along the
ventral sensorimotor cortex (figure 1(b)).

This work has several limitations. First, the
dataset size was relatively small. Second, the data
were collected from able-bodied participants. Both
are consequences of doing research on tempor-
ary ECoG recordings in human subjects. Despite
these limitations, our results offer a methodology
for obtaining high-accuracy word decoding from
brain activity while optimizing selection of frequency
and electrode features. Maximizing individual word
decoding performance this way has the potential to
further advance the development of speech BCIs.
Future work will focus on optimal feature selection
in the time dimension with the aim to identify a time
window in neural data that leads to best decoding.
We will also extend this methodology to tasks other
thanword reading and release the toolbox for optimal
neural feature selection for BCI decoding to the neur-
oscience community.

2.1.2. Presenter: Richard Csaky, PhD (University of
Oxford, United Kingdom)
Title: Inner speech decoding from EEG and MEG
Master: Christian Herff, PhD (Maastricht University,
Netherlands)
Theme: Signal acquisition

3



J.N
euralEng.22

(2025)
022001

S
C
ern

era
etal

Table 1. Summaries included in this paper and presented during the master classes, arranged by theme and following the same order as the sections.

Theme Presenter Master Initial theme Title

Speech decoding Julia Berezutskaya Sergey Stavisky Signal analysis Optimizing feature selection for word decoding
with high-density electrocorticography

Richard Csaky Christian Herff Signal acquisition Inner speech decoding from
electroencephalography and
magnetoencephalography

Maxime Verwoert Sergey Stavisky Signal analysis Evaluating implant locations for a minimally
invasive speech BCI

Motor imagery
BCIs

Daniel Polyakov Christian Herff Non-implanted—control Recruiting neural field theory for motor imagery
data augmentation

Sotirios Papadopoulos Richard Andersen Signal analysis What is the exact relationship between beta band
activity and hand motor imagery?

Valeria Spagnolo Ning Jiang Non-implanted—control Towards co-adaptive BCI based on supervised
domain adaptation: results in motor imagery
simulated data

Juliana Gonzalez Astudillo Richard Andersen Signal analysis Network features for motor imagery-based
brain–computer interfaces

Satyam Kumar & Hussein Alawieh Fabien Lotte Non-implanted—control Transfer learning promotes acquisition of individual
BCI skills

BCIs for pediatric
populations

Dion Kelly Camille Jeunet User aspects The effect of gamified calibration environments on
P300 and MI BCI performance in children

Joanna R.G. Keough Camille Jeunet User aspects Mechanisms and impacts of brain–computer
interface fatigue in children

Araz Minhas David E. Thompson Non-implanted—other Does my child know I am here? EEG signatures of
parental comfort for disorders of consciousness in a
critically ill child

Platforms for
closed-loop BCI
research

Matthias Dold Aysegul Gunduz &
Andreea Ioana Sburlea

Implanted—control Platform for closed-loop deep brain stimulation
research: DAREPLANE

Deep learning in
BCIs

Yiyuan Han Christian Herff Signal analysis Offline prediction of prolonged acute pain by means
of convolutional neural network model applied to
electroencephalographic oscillatory connectivity

Alexander McClanahan Xing Chen Signal analysis Decoding visual scenes from visual cortex spikes
using deep learning

Mousa Mustafa Marianna Semprini Implanted—other Decoding invasive brain signals using deep learning

(Continued.)
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Table 1. (Continued.)

Theme Presenter Master Initial theme Title

Exploring BCIs for
neurorehabil-
itation

Jose Gonzalez-Espana Ning Jiang Non-implanted—control NeuroExo: a low cost non invasive brain computer
interface for upper-limb stroke neurorehabilitation
at home

Florencia Garro Ning Jiang Non-implanted—control Effects of robotic assistance in ERP modulation for
upper-limb exoskeleton control

Angela Vujic David E. Thompson Non-implanted—other Joie: an affective brain–computer interface for
learning mental strategies for positive affect

Advancements in
sampling the
sensorimotor cortex

Kriti Kacker Richard Andersen Implanted—control Spectral features of endovascular ECoG signals
recorded from a Stentrode in human motor cortex

Christoph Kapeller Christian Herff Signal acquisition Increased spatial resolution reveals separated EEG
activation of individual finger movements

Simon Geukes Victoria Peterson Signal analysis Ultra-high-density electrocorticography recordings
of the human sensorimotor cortex

Novel techniques
for advancing BCI
performance

Tan Gemicioglu Ning Jiang Non-implanted—control Transitional gestures for enhancing ITR and
accuracy in movement-based BCIs

Ceci Verbaarschot Marianna Semprini Implanted—other The effect of artificially created sensory feedback on
motor cortex activity during task performance

Michael Wimmer Marianna Semprini Non-implanted—other Toward Hybrid BCI: EEG and Pupillometric
signatures of error perception in an immersive
navigation task in VR

Mushfika Sultana Eli Kinney-Lang Non-implanted—other Assessing the impact of transcranial direct current
stimulation on the enhancement of race driving
skills

Sara Ahmadi Xing Chen Signal analysis A model-based dynamic stopping method for
code-modulated visual evoked potentials BCI
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Figure 1. Optimal feature selection results. (a) Word decoding accuracy for five feature selection strategies. Chance level accuracy
is shown with a dashed blue line. Since leave-one-out cross-validation was used, no error bars are shown. (b) Optimal features
identified with strategy (5) are shown on individual subject brain renderings. For reference, optimal features identified with
strategy (2) are also shown suggesting that both a combinatorics approach looking for the best smaller subgrid and a recursive
feature elimination approach may provide overlapping results. Colored electrodes represent electrodes chosen by recursive feature
elimination as optimal (color denotes the frequency range in which the electrode was chosen). Small black electrodes outline the
overall electrode grid coverage.

Although inner speech is commonly experienced in
daily life, there has been a scarcity of research focusing
on imaged or covert speech, especially regarding non-
invasive techniques [5]. This study seeks to address
this gap by using EEG andMEG to collect data during
three different inner speech paradigms, along with
conducting an initial decoding analysis. Such research
has the potential to lay the groundwork for word-level
communication via BCIs [6].

We conducted a study to examine the differences
between silent reading, repetitive inner speech, and
generative inner speech using five patient-relevant
words (help, hungry, tired, pain, thirsty) in three
healthy participants. Before and after each session,
5 min of resting state EEG andMEG data were collec-
ted. For all sessions, we additionally collected ECG,
EOG, (EMG; on the jaw), and eye-tracking data.
We collected a large number of inner speech trials
(∼200/word) in each session.

Although several methods were tried, no signi-
ficant decoding was obtained using the MEG inner
speech data. On the silent reading trials, we trained
a 2-layer linear neural network using the entire 1 s
epoch with 20-fold cross-validation. For one of the
participants with six sessions, 30% validation accur-
acy was obtained, whereas 44% was achieved for
the other participants (figure 2—example valida-
tion accuracy from one participant). Using a sliding-
window linear discriminant analysis model, the peak

accuracy was observed between 300 and 400 ms post-
stimulus. In the EEG inner speech data, we found
above-chance validation accuracy in only 3 sessions
(out of 10), with an average of 25% in these 3 sessions.
We tried various BCI decoding methods, e.g. wave-
let features, Riemannian classification, and linear and
nonlinear models, but nothing seemed to improve
performance.

We explored the potential of decoding inner
speech from a new MEG and EEG dataset through
three paradigms across a few participants, but
with a large number of trials. Our silent read-
ing results demonstrate the feasibility of decod-
ing visual representations of words from non-
invasive recordings. The decoding appeared to
be driven by early visual responses, with a
later peak potentially reflecting higher-level lan-
guage processing. This late component merits
further investigation as a marker of semantic
processing.

In contrast to silent reading, our extensive
efforts to decode two types of inner speech were
largely unsuccessful across EEG and MEG. While
we explored various decoding algorithms and experi-
mental designs, accuracy never substantially exceeded
chance levels. This contrasts with more promising
results from intracranial recordings in humans and
suggests non-invasive signals may not adequately
capture the subtle dynamics of inner speech.

6
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Figure 2. Validation accuracy distributions across the 5 folds of the 10 inner speech EEG sessions of one participant. Separate LDA
models are trained and evaluated on each fold and session to decode which of the 5 words is being used in the 1 s inner speech
trials. Chance level is 0.2.

Several factors could underlie the difficulty of
decoding inner speech non-invasively. Inner speech
lacks the external stimuli and muscle activations
present during overt tasks, reducing the signal-to-
noise ratio. There is also high inter-individual vari-
ability in inner speech strategies. Here, we focused
on collecting large trial counts from a few parti-
cipants rather than a small sample across many sub-
jects. Further limitations of our work include the
small number of participants and the small set of
words.

Future investigations could explore altern-
ative paradigms more representative of natural
speech, such as imagining longer phrases or read-
ing whole sentences silently. Transfer learning and
self-supervisionmay help extract robust inner speech
representations amidst noise. Intracranial findings
point to superior temporal, inferior frontal, and
motor areas as promising decoding targets. For non-
invasive BCIs, approaches beyond word-level decod-
ing may be needed for inner speech-based commu-
nication, such as decoding phonemes, or imagined
handwriting.

2.1.3. Presenter: Maxime Verwoert (Maastricht
University, Netherlands)
Title: Evaluating implant locations for a minimally
invasive speech BCI
Master: Sergey Stavisky, PhD (University of
California, Davis, USA)
Theme: Signal analysis
Speech BCIs present a promising avenue for restor-
ing communication in individuals affected by a
speech impairment, by converting neural signals into
speech. While conventional intracranial BCI techno-
logies often necessitate craniotomies for implanta-
tion, stereo-EEG (sEEG) offers a less invasive option,

requiring only small burr holes [7]. This technology
has the added benefit of sampling many cortical and
subcortical regions at once. With the brain-wide cov-
erage obtained through many recordings with epi-
lepsy patients using sEEG electrodes, we sought to
determine suitable electrode shaft locations for a
speech BCI.

We recorded overt speech production data with
24 participants. Their acoustic and neural data were
time-aligned before applying an electrode-shaft re-
reference. A unit selection approach was used to
reconstruct the neural signal directly into audio using
a 10-fold cross-validation. Each individual shaft of
each participant was analyzed separately to examine
the spatial characteristics of decoding accuracy. We
evaluated the audio reconstruction performance for
each shaft by correlating the spectrogram of the ori-
ginal speech waveform to that of the reconstructed
waveform.

Only a small number of shafts had a significant
speech reconstruction performance and were mostly
located near the lateral and central sulci (figure 3).
The prefrontal and occipital cortices did not appear
to be informative. There was no difference in per-
formance between the two hemispheres. We identi-
fied five cortical regions, in addition tomany contacts
in white matter, that were most involved in the signi-
ficant shafts: the auditory cortex, the superior tem-
poral cortex, the pre- and postcentral cortices, and
the insula. The insula, auditory cortex, other sulcal
regions, and contacts within white matter are partic-
ularly interesting, as these are not usually sampled
with electrodes on the cortical surface. Identifying
these target locations for a less invasive speech BCI
may help in developing an advantageous solution to
restore communication for individuals with speech
impairments.

7
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Figure 3. Electrode contacts belonging to significant shafts depicted in red, projected on an averaged brain. Highlighted in green
are the most important regions (auditory cortex, superior temporal cortex, pre- and postcentral cortices, insula) in both
hemispheres.

Figure 4. Evaluation workflow for MI data augmentation: a small dataset is created, and accuracy is tested using inverse
cross-validation, with one-fold for training and the rest for testing. The motor imagery pipeline involves EEG preprocessing,
common spatial pattern decomposition, feature extraction, and classification. NFT-based augmentation creates artificial CSP
time series using a corticothalamic NFT model fitted to the original data. EEG, electroencephalography; CSP, common spatial
patterns; NFT, neural field theory; LDA, linear discriminant analysis. Reproduced from [10]. CC BY 4.0.

2.2. MI BCIs
MI-based BCIs have been a common method
throughout the history of BCI and are particularly
popular for non-invasive approaches such as EEG
[8]. MI has been convenient for a wide variety of
patient populations and consumer applications alike,
as it does not need external stimuli to perform and
provides an intuitive mapping for control tasks.
However, MI often requires training for each user
and can suffer from low accuracy when classifying
multiple imagined movements. The recent work in
this area pushes the boundaries of decoding by eval-
uating alternate features such as beta burst activity
and novel motor network metrics to enhance classi-
fication. Researchers also attempt to reduce the data
needed for MI by applying domain adaptation, DA
techniques, and transfer learning.

2.2.1. Presenter: Daniel Polyakov, PhD (Ben-Gurion
University, Israel)
Title: Recruiting NFT for MI DA
Master: Christian Herff, PhD (Maastricht University,
Netherlands)

Theme: BCI non-implanted—control
This study presents a new approach to enhance BCIs
that rely on MI. A common challenge faced by MI-
based BCIs is the scarcity of diverse training data,
hindering their accuracy and practicality. To address
this, we introduce a novelDAmethod leveragingNFT,
a computational model inspired by the human brain’s
neural dynamics (figure 4) [9].

The core innovation lies in using NFT to gen-
erate artificial EEG time series that mimic the ones
recorded during an MI task, in order to expand
the training dataset. To evaluate this approach, we
employed the widely used ‘2a’ dataset from BCI
Competition IV [11]. For each subject in the data-
set, we fitted an NFT model to common spatial pat-
terns of each MI class, jittered the fitted parameters
to enhance diversity, and generated time series for
DA.

Our method resulted in a significant accuracy
improvement of over 2% when classifying the ‘total
power’ feature, but it did not enhance classification
for theHFD feature.We compared our approachwith
a DA method that adds Gaussian noise to feature
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values, but the noise-based method failed to achieve
statistically significant accuracy improvements.

The lack of improvement in HFD-based classific-
ation suggests that the NFT model was more effect-
ive at representing certain features, particularly those
in the time domain. This could be because the NFT
fitting process discards phase information, poten-
tially limiting its effectiveness for features like HFD.
Another finding was that user proficiency in MI tasks
influenced the efficacy of the DA, with more profi-
cient users benefiting more from augmentation.

This study provides insights into the underlying
mechanisms of the augmentation process by examin-
ing how NFT parameters impact the extracted fea-
tures. Future research could explore the efficiency of
this DA method for additional MI classification fea-
tures, such as kurtosis or sample entropy, with a focus
on parameter jittering. Additionally, assessing this
method’s compatibility with other BCI paradigms
could offer further valuable applications.

In conclusion, this research represents a signific-
ant advancement in the field of MI-based BCIs. By
employing physiological models and innovative aug-
mentation techniques, the study not only improves
BCI performance but also offers valuable insights into
the dynamics of NFT and its application in BCIs.

2.2.2. Presenter: Sotirios Papadopoulos (Université
Claude Bernard Lyon 1, France)
Title: What is the exact relationship between beta
band activity and hand MI?
Master: Richard Andersen, PhD (California Institute
of Technology, USA)
Theme: Signal analysis
Since the characterization of the ERD and ERS phe-
nomena in the mu and beta frequency bands [12],
the BCI community has heavily relied on band-
limited power changes as the classification features of
interest. Recent investigations in neuroscience have
challenged the notion that signal power is the best
descriptor of movement-related brain activity modu-
lations, particularly in the beta frequency band (∼13–
30 Hz). Studies have demonstrated that on a single-
trial level beta band activity occurs in short, tran-
sient events, termed ‘bursts’, rather than sustained
oscillations [13]. This suggests that the ERD/S pat-
terns only emerge when averaging across multiple tri-
als, indicating that signal powermay not fully capture
all relevant brain activity modulations during motor-
related tasks.

Analyzing beta bursts holds promise for access-
ing markers that may be as sensitive as beta power
for classification, and that potentially capture more
subtle condition-specific changes. To investigate this
possibility, we used six EEG datasets [14] and
examined the activity of channels C3 and C4 while
the participants were performing ‘left’ and ‘right’

hand MI. Using a new burst detection and wave-
form analysis algorithm (figure 5) [15], we demon-
strated that classification features which describe the
modulation of burst rate for beta bursts with dis-
tinct waveforms can be more informative than beta
power alone. Furthermore, these features were more
reliable than conventional burst activity representa-
tions (e.g. rate, amplitude, temporal, and frequency
spans). These results illuminate the non-linear rela-
tionship between beta burst activity and band power,
underscoring the potential benefit for the BCI field
from incorporating such recent neurophysiological
findings [16].

In order to compute these waveform-specific
burst rates, in this study we employed a nested cross-
validation classification procedure. The computa-
tional complexity of this algorithmwas amajor limit-
ation that needed to be circumvented so that a burst-
based analysis of the beta band activity could be suit-
able for BCI applications. To address this, we took
advantage of aforementioned results and, in a follow-
up study, we introduced a new framework for analyz-
ing beta burst activity. Briefly, we defined a metric to
identify burst waveforms, recorded in channels C3 or
C4,whose rate is expected to bemaximallymodulated
during a MI task. Then, we used these waveforms as
data-driven kernels and convolved the EEG record-
ings with each kernel. This allowed us to efficiently
filter the signals of all recording channels and gave
us access to state-of-the-art classification algorithms.
We showed that beta burst waveforms, when used as
data-driven filters, can improve classification accur-
acy and ITR [17], while also minimizing the classi-
fication score loss in across-session transfer learning
paradigms [18].

2.2.3. Presenter: Valeria Spagnolo (Instituto de
Matemática Aplicada del Litoral, IMAL,
CONICET-UNL, Santa Fe, Argentina)
Title: Towards co-adaptive BCI based on supervised
domain adaptation: results in MI simulated data
Master: Ning Jiang, PhD (University of Waterloo,
Canada)
Theme: BCI non-implanted—control
BCIs can be thought of as a two-learners sys-
tem, in which the user learns how to control
the computer and, simultaneously, the computer
learns how to decode the user’s brain activity [19].
When used across several sessions, the machine
learning system employed to decode brain activ-
ity should adapt to changes in the EEG signal and
help the user in the development of stable brain
patterns. In this line, a BOTDA was proposed to
avoid recalibration in cross-session MI-BCIs and
to improve decoding performance [20]. Although
BOTDA showed promising results in a supervised
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Figure 5. Flowchart of the waveform-resolved burst rate analysis: each dataset was pre-processed by rejecting trials and keeping
channels C3 and C4. A burst detection algorithm was applied to these raw signals. The remaining trials were split into three sets
using nested 5-fold cross-validation. The first set, used to sample bursts and create a principal component analysis model (green
boxes/arrows), combined data from all subjects. The second set, for training/testing (purple boxes/arrows), selected the best
waveform-resolved features via repeated cross-validation. The third set (orange boxes/arrows) validated the model and computed
classification scores. PCA, principal component analysis. Reproduced from [16]. © IOP Publishing Ltd All rights reserved.

sample-wise scenario, it is interesting to elucid-
ate the extent to which the success of the adapt-
ation depends on the subject’s ability to perform
the MI task or on the adaptive capabilities of the
model.

To investigate this, we simulated MI vs. rest EEG
data to control MI alpha desynchronization (i.e.
ERD) in the left hemisphere during MI. We conduc-
ted different cross-session scenarios, where a simu-
lated session (S1) was used as a calibration dataset
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and a second session (S2) was utilized for testing. For
each session, 100 trials of each classwere generated. As
a decoding algorithm, a common spatial pattern and
a linear discriminant analysis were used [21]. Firstly,
the model was trained at the ideal session (S1) and
the performance of BOTDA was tested in sessions
with decreasing %ERD. BOTDA showed successful
adaptation when the provided EEG patterns matched
the mental task, regardless of the %ERD in S2. On
the contrary, experiments manipulating the percent-
age of erroneous MI trials indicated that BOTDA
could not conduct a successful adaptation when there
was a mismatch in between the provided EEG pat-
tern and the intended mental task. Finally, we trained
the decoding model with data from sessions with
different ERD values. The decoder yielded chance-
level performance when calibration data lacked dis-
cernible ERD patterns, highlighting BOTDA’s efficacy
only with discriminative calibration data. Results on
these simulations suggest that BOTDA can be a valu-
able tool for developing co-adaptive MI-BCI systems.

2.2.4. Presenter: Juliana Gonzalez Astudillo, PhD
(Paris Brain Institute, France)
Title: Network features for MI-based BCIs
Master: Richard Andersen, PhD (California Institute
of Technology, Pasadena, USA)
Theme: Signal analysis
Exploring the complexities of the brain’smotor cortex
has been a central focus in neuroscience, particularly
in advancing BCI technology. Traditionally, decoding
MI has relied on understanding the spatial organiz-
ation of the motor cortex [22], known for its prin-
cipal involvement in controlling the contralateral side
of the body. Moreover, recent advancements under-
score that functional connectivity patterns not only
unveil this lateralization during motor-related tasks
but also offer a captivating window into modeling
MI as a dynamic and intricate network, where brain
regions or sensors serve as nodes and their statistical
dependencies as links [23].

Here, we have investigated brain network topo-
logy and spatial organization’s dual contribution
to enhancing MI decoding through functional
lateralization [24]. Introducing novel network met-
rics for integration (ω) and segregation (σ), we
elucidate the contributions of within- and across-
hemispheric connections in modeling MI states.

Using multiple open-access datasets of EEG sig-
nals from MI experiments focusing on left and right
hand grasping motions [25], we construct spectral
coherence-based networks and calculate lateraliza-
tion metrics for each electrode. Our analysis iden-
tifies discriminant electrodes predominantly located
in motor-related areas such as the primary motor
cortex, premotor area, supplementary motor area,
and primary somatosensory cortex, which are crucial

for movement planning and execution. Notably, ω
highlights motor cortex involvement, while σ extends
to frontal areas implicated in attention and motor
planning.

In BCI classification, these network proper-
ties yield competitive accuracy and provide neuro-
physiological insights, contrasting with conventional
approaches like common spatial pattern filters and
Riemannian methods, which lack neurophysiological
interpretation. However, the developed metrics are
primarily suited for lateralized tasks, for instance
bilateral motor cortex recruitment may result in sim-
ilar features for both hands, limiting their discrim-
inative power. Looking ahead, the precise detection
of involved areas opens up the possibility of ana-
lyzing the temporal dynamics of these metrics to
identify different stages of motor action. Combined
with dynamic classification techniques, this could
provide amore accurate and reliable solution for BCI.

2.2.5. Presenters: Satyam Kumar & Hussein Alawieh
(The University of Texas at Austin, USA)
Title: Transfer Learning Promotes Acquisition of
Individual BCI Skills
Master: Fabien Lotte, PhD (Inria Center at the
University of Bordeaux, France)
Theme: BCI non-implanted—control
MI is one of the most commonly used modalities for
controlling BCIs [26–28] due to its volitional nature,
requiring no external stimuli. However, MI-based
BCIs often necessitate tedious calibration sessions
to record EEG data for building real-time machine
learning decoders, which may suboptimally perform
due to inherent EEG signal non-stationarity. Recent
studies underlie the importance of longitudinal train-
ing with closed-loop feedback for robust MI-BCI
control [29, 30]. In this study [31] we show that a
decoder trained on data from a single expert can
provide consistent closed-loop feedback to naive sub-
jects thus promoting MI skill acquisition. We pro-
pose two subject-independent real-time frameworks:
a) GR employing unsupervised domain adaptation,
and b) PAR, an extension of GR that updates decoder
parameters in real-time using a small amount of the
naive subject data. These frameworks are founded on
Riemannian Geometry Classifiers, leveraging affine
invariant transforms to match covariate shifts on
the Riemannian manifold [32, 33], thereby reducing
non-stationarities in real-time and providing contin-
gent closed-loop feedback.

We tested our proposed framework on 18 BCI-
naive volunteers, dividing them into PAR and GR
groups.Over five consecutive online training sessions,
participants controlled a standard binary class MI
task with bar feedback [34] followed by a car racing
task [35]. Experimental results show that participants
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in both groups exhibited increases in command deliv-
ery performance in the bar task (GR: p < 0.05 and
PAR: p < 0.01). Moreover, subjects show a signi-
ficantly increasing trend in command delivery per-
formance over online sessions in both the frame-
works. Race completion time values in the car racing
task indicated that participants could finish the races
significantly faster following the training sessions
compared to their initial performance for both GR
(p< 0.01) and PAR (p< 0.05). Furthermore, feature
separability analysis [36] showed significant increas-
ingly discriminant features for both frameworks and
tasks. For both frameworks, the most contributing
EEG channels for discriminating between the twoMI
classes were predominantly over the motor cortex.
Despite using feedback from subject-independent
decoders, participants developed their own enhanced
individual MI features, distinct from the expert’s data
used for decoding. Finally, we demonstrate that unsu-
pervised adaptation (GR) coupled with longitudinal
training reached statistically similar performance to
supervised recalibration (PAR) in a realistic setting.

Our proposed transfer learning frameworks pro-
moted MI skill acquisition, removing the need
for calibration sessions. Participants demonstrated
improved BCI control and increased feature dis-
criminability over multiple training days, crucial for
mutual learning settings. Importantly, our frame-
works enabled participants to modulate their task-
specific individualized feature spaces for BCI control,
diverging from the expert’s patterns.

A limitation of the current work is that users
operated the BCIs in binary class settings. Future
work should aim towards validating the proposed
frameworks in multiclass BCI settings to enhance the
degree of freedom for controlling external devices
and applications. Moreover, the current study used
data from a single expert subject for online feed-
back. In the future, data from multiple experts could
be pooled together to train data-driven deep learn-
ing models like EEGNet [37] and TSMnet [38] for
improving online BCI feedback. Finally, these expert-
based decoding frameworks could be used to provide
online feedback to stroke patients for longitudinal
MI-BCI training who may struggle to generate dis-
tinctive calibration data due to their reduced ability
to modulate SMR [39].

2.3. BCIs for pediatric populations
BCIs hold promise for enhancing the interaction
and communication abilities of individuals with
motor impairments. However, there has been lim-
ited exploration of BCI research involving pediatric
and young adult populations [40]. Existing studies
in these demographics have yielded conflicting res-
ults, underscoring the need for the BCI community to
focus on enhancing the design, implementation, and
user experience specifically tailored for pediatric and
young adult populations. This emphasis is especially

crucial for individuals with neurodevelopmental dis-
orders, neurodegenerative disorders, or severe motor
disabilities.

2.3.1. Presenter: Dion Kelly, PhD (University of
Calgary, Canada)
Title: The effect of gamified calibration environments
on P300 and MI BCI performance in children
Master: Camille Jeunet, PhD (Aquitaine Institute for
Cognitive and Integrative Neuroscience, Bordeaux,
France)
Theme: User aspects: experience, ethics, target
population
This study explored the potential of gamification
to improve BCI calibration in children, aiming to
address longstanding calibration challenges such as
monotony and lack of engagement, which are exacer-
bated by children’s limited attention and motivation
[41]. Incorporating scoring and rewards into calib-
ration tasks, this randomized, cross-over study com-
pared gamified and non-gamified environments to
assess their impact on classification accuracy and task
performance.

Thirty-two typically developing children (mean
age 11.9 years) participated in two sessions, per-
forming utility-driven tasks following gamified and
non-gamified calibration. The tasks included spelling
via visual P300 ERPs (figure 6) and controlling a
cursor via SMR modulation (figure 7). Gamification
elements like stories, quests, points, and sounds
were integrated into the gamified calibration envir-
onments to enrich engagement. We evaluated BCI
performance, including classification accuracy and
online accuracy, as well as motivation, tolerability,
and mental workload. For the P300 paradigm, clas-
sification accuracy was high in both gamified and
non-gamified conditions, exceeding 96%. However,
online performance during the spelling task was
significantly lower following gamified calibration
(71.47%) compared to non-gamified calibration
(80.47%, p < 0.01). In the SMR paradigm, classi-
fication accuracy was 61.81% in the gamified con-
dition versus 59.84% in the non-gamified condi-
tion, with no significant differences between condi-
tions for classification or online cursor control per-
formance. Furthermore, gamification did not signi-
ficantly impact participants’ motivation, tolerability,
or workload perceptions.

This study highlights the capability of children to
effectively use advanced BCI systems, achieving per-
formance comparable to adults. However, the results
suggest that the gamified elements employedmay not
have been sufficiently engaging. Several limitations
should be noted, including the potential introduc-
tion of an auditory P300 component due to audit-
ory stimuli in the gamified calibration task, which
was absent in the utility-driven tasks and may have
affected classification performance. Additionally, a
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Figure 6. P300 scenes: standard calibration scene (left), gamified calibration scene (Mole Patrol game, middle), two-stage T9
speller scene for spelling task (right).

Figure 7. SMR scenes: standard calibration scene (left), gamified calibration scene (Banana Dash game, middle), cursor control
scene for yes/no response task (right). Calibration consisted of 20 segments of six 1.5 s-epochs for a total time of 5.67 min.

ceiling effect in the P300 paradigm, where perform-
ance was already high in the non-gamified condition,
may have limited the ability to observe the true impact
of gamification on BCI performance.

Future investigations should focus on optimizing
gamified calibration environments tailored to indi-
vidual preferences and abilities. There is also a need to
explore alternative gamification designs, potentially
incorporating user feedback to enhance engagement
and motivation, especially for younger children or
those with disabilities. Further research is also neces-
sary to examine the long-term effects of repeated
practice on BCI performance and to investigate how
these results translate to clinical populations with
motor impairments or communication challenges.

2.3.2. Presenter: Joanna R.G. Keough, MSc (University
of Calgary, Canada)
Title: Mechanisms and Impacts of BCI Fatigue in
Children
Master: Camille Jeunet, PhD (Aquitaine Institute for
Cognitive and Integrative Neuroscience, France)
Theme: User aspects: experience, ethics, target popu-
lation
BCIs can assist children with disabilities in commu-
nication, environmental exploration, and gameplay
[42]. BCI research is rapidly developing but has neg-
lected pediatric populations. Like many cognitively

demanding tasks, fatigue is a critical factor to consider
for BCI performance and enjoyment [40] and has
often been reported by patients and families within
our pediatric clinical BCI program. BCI fatigue has
been studied in adult populations, but there are no
pediatric studies to date. This prospective, cross over
study assessed the effects of two BCI paradigms and
a control condition on self-reported fatigue and an
EEG biomarker of fatigue—alpha band power.

Thirty-two typically developing children aged 7–
16 years participated in three sessions:MI-BCI, P300-
BCI, and film viewing (control) (figure 8). The DSI-
24 C headset was utilized for BCI operation and
EEG collection. Self-reported fatigue and resting-
state EEG alpha band power significantly increased
across all sessions (p< 0.001; p= 0.047 respectively).
The increase in self-reported fatigue observed was
greater in the younger half of participants. These two
measures of fatigue were uncorrelated to one another.
No differences in fatigue development between ses-
sions were observed. This project provides a baseline
understanding of pediatric BCI fatigue. Short periods
(30 min) of BCI use can increase self-reported fatigue
and an EEG biomarker of fatigue. Performance was
stable across BCI sessions and not associated with our
measures of fatigue.

The clinical implications and impact of fatigue on
usability and enjoyment are unclear and point to lim-
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Figure 8. Protocol schematic for all three sessions. Session tasks were balanced using a Latin square design. Sessions lasted
60–90 min. MI, motor imagery; RS, resting state. Adapted from [43]. CC BY 4.0.

itations of this study. These include a modest sample
size and large age range complicating age-based ana-
lysis. An additional unexpected challenge was the tol-
erability of the DSI headset. Many participants found
it uncomfortable and 25% of participants requested
to stop at least one of the three sessions early due
to discomfort. Despite these limitations, our results
support the variability of fatigue and the overall BCI
experience in children that warrant future investig-
ation to inform the design of pediatric BCI systems
to meet the unique goals of children and families.
These investigations should include longer BCI ses-
sions with a more tolerable headset. Not all children
had adequate control of the BCI, and future work
should uncover predictors of performance particu-
larly in children. Strategies should be identified to
promote BCI learning.

2.3.3. Presenter: Araz Minhas (University of Calgary,
Canada)
Title:Does my child know I am here? EEG Signatures
of Parental Comfort for DoC in a Critically III Child
Master: David E. Thompson, PhD (Kansas State
University, USA)
Theme: BCI non-implanted—other
Each day in the PICU, there are unconscious and
comatose children afflicted with severe brain diseases,
whose parents lie beside them, desperately wonder-
ing if their child will ever awaken. Up to 20% of
adult patients with such DoC exhibit signs of CMD
[44], wherein patients’ willful modulation of brain
activity may be observed via EEG when given motor

commands—indicating some intact cognition, des-
pite behavioral unresponsiveness. CMD is a prom-
ising early positive prognosticmarker andmay enable
some simple communication (‘Yes’/‘No’) via BCIs
for such patients. Unfortunately, children have been
largely neglected in CMD and BCI research [45].
However, much potential for revealing CMD may
lie in their developing brain networks’ heightened
receptivity to social stimuli like parental comfort
and affection. Detecting such networks’ activation
in comatose children whose parents are constantly
caring for them in the PICU could reveal new brain
activity markers that may help predict outcomes early
and allow families to communicate with their chil-
dren in critical circumstances.

To explore this possibility, a 13 year-old female
post-anoxic coma patient’s 20-channel EEG was ana-
lyzed with synchronized 17 h PICU video footage.
HFD values (indexing EEG complexity) were com-
pared across video-derived timestamps of parental
comfort (physical contact/talking to children), pres-
ence (in room), and absence. Shifts in child EEG com-
plexity (mean HFD) positively correlated with par-
ental comfort (r ≈ 0.26). HFD values formed two
clusters (K-means; Silhouette= 0.54)—ahigherHFD
cluster (1.40± 0.11) coinciding mainly with parental
presence (74%of clustered time points), and onewith
lower HFD (1.24 ± 0.05) primarily during parental
absence (61%, p < 0.01). These preliminary results,
summarized in figure 9, suggest that parental com-
fort may elicit discernible EEG changes in pediat-
ric DoC—encouraging future investigations of such
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Figure 9. (a) K-means clustering of Higuchi Fractal dimension (HFD) values from continuously recorded EEG (cEEG) data of a
pediatric post-anoxic coma patient, revealing two distinct clusters. (b/d) Mean HFD values across channels over time, indicating
fluctuations in EEG complexity. Temporal alignment of parental state with cEEG suggests a correlation between parental comfort
and increased EEG complexity. (c) Distribution of EEG samples per cluster found higher HFD values associated with parental
presence/comfort, and lower HFD during parental absence. (a)–(d) Reproduced from [46]. CC BY 4.0.

indicators for assisting prognosis or communicative
BCIs. As the generalizability of these results is lim-
ited by the single-patient case design, future research
involving larger cohorts will also be needed to valid-
ate these findings, and more extensively explore the
integration of such complexity measures into pro-
gnostic models and potential BCI tools for pediatric
coma.

2.4. Platforms for closed-loop BCI research
Closed-loop BCI applications encompass a diverse
array of functionalities, extending from delivering
precisely timed brain stimulation [47, 48] to offer-
ing instantaneous feedback to users and facilitating
the control of various end effectors [49]. This mul-
tifaceted scope enables closed-loop BCIs to cater to
a wide spectrum of needs and scenarios, including
therapeutic interventions, neurorehabilitation pro-
grams, and assistive technologies aimed at enhancing
users’ autonomy and quality of life. Developing plat-
forms that can easily perform or integrate closed-
loop applications may enable the generalizability and
translation of these applications.

2.4.1. Presenter: Matthias Dold (Radboud University,
Netherlands)
Title: Platform for closed-loop DBS research:
DAREPLANE
Masters:Aysegul Gunduz, PhD (University of Florida,
USA) & Andreea Ioana Sburlea, PhD (University of
Groningen, Netherlands)
Theme: BCI implant—control

BCIs continuously decode the brain state, a highly
relevant building block for adaptive neurostimula-
tion. The DAREPLANE [50] project creates a mod-
ular open source platform to enable BCI meth-
ods for aDBS. Current research on aDBS is either
conducted with custom soft- and hardware setups
[51–53], or is fully embedded in a single vendor’s
system [48, 54, 55]. DAREPLANE supports custom-
ized setups by providing a platform of open-source
single responsibility modules for tasks involved in
closed-loop setups. Examples of such tasks related
to aDBS are controlling the stimulation parameters,
decoding multi-modal recordings, exploring control
strategies, rendering of different user tasks, a thor-
ough logging, and real time data monitoring. An
abstract high-level overview of such a setup with
DAREPLANE is shown in figure 10.

The platform is built with the experience of our
previouswork on decoding of neuralmarkers forDBS
[53]. It relies on socket communication and uses the
lab streaming layer [56] protocol for data stream-
ing. This choice makes it mostly technology agnostic,
with the exception of the central orchestration which
is implemented in Python. The modules can still be
used standalone, relaxing the requirements to the
programming language the modules are implemen-
ted in.

An early stage version of the platform has
already been used during a single aDBS session and
various open-loop DBS sessions [50] in patients
with PD while they are performing a motor task
[57]. Although targeted for aDBS experiments,
DAREPLANE can also be used to implement classical
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Figure 10. Schematic of a closed-loop DBS experiment and involved DAREPLANE modules. The jigsaw puzzle pieces represent
different modules that can be combined to an aDBS setup. Different modules for the same type of task can be switched in place.
EEG, electroencephalography; LFP, local field potential; ECoG, electrocorticography; I/O, input/output; API, application
programming interface; PID, proportional—integral—derivative. Reproduced from [50]. © IOP Publishing Ltd
CC BY-NC-SA 4.0.

BCI applications like spellers or motor-imagery con-
trols. Due to the use of network communication, the
bandwidth of the involved network hardware can
limit the throughput of the platform. This can be rel-
evant for high channel counts, with high sampling
rates and depends on how much data is shared
between modules. Further work will investigate and
quantify these limits in more detail.

2.5. Deep learning in BCIs
As the availability of large-scale datasets continues
to grow, leveraging deep learning techniques for fea-
ture extraction and decoding brain states within BCI
systems holds the potential to significantly enhance
performance [58]. This advancement could lead
to more accurate and reliable outcomes, ultimately
empowering BCI technology to better serve individu-
als with diverse neurological conditions and needs.

2.5.1. Presenter: Yiyuan Han, PhD (University of
Essex, United Kingdom)
Title: Offline Prediction of Prolonged Acute
Pain by means of CNN Model applied to
Electroencephalographic Oscillatory Connectivity
Master: Christian Herff, PhD (Maastricht University,
Netherlands)
Theme: Signal analysis
Unresponsive patients, e.g. ones with disorder of con-
sciousness, face challenges in communicating their
pain, making pain assessment difficult for caretakers.
EEG signals offer a potential avenue for pain assess-
ment at the bedside. However, due to individual

variation, building accurate pain assessment models
necessitates labeled data, which cannot be obtained
from unresponsive patients. To address this gap,
we aimed to develop a model capable of general-
izing to new individuals without labeled data. For
this purpose, we trained a CNN to classify pain
and non-pain conditions from EEG signals across
individuals.

Forty-three healthy individuals participated in the
experiment, with data from thirty-six participants
included for analysis after exclusions. We focused on
two conditions: pain induced by hot water (H) and
resting states with eyes open (O) or closed (C). EEG
signals were segmented into 5 s trials with a 50%over-
lap. ISPC was computed to measure functional con-
nectivity between 32 EEG channels [59]. The ISPCs
were reorganized into a 32 × 32 matrix as input fea-
tures for the CNN model. Leave-one-out tests were
conducted for each participant, with one participant
excluded from model training. Cumulative evidence
(CE) was computed to evaluate the effect of the num-
ber of consecutive trials. In the binary classifications
between pain condition (H) and resting states (O
or C), the accuracy of CE was significantly higher
than the tests without cumulative evidence within
one minute (figure 11(a)). For H vs O, the maximum
CE accuracy was 69.26 ± 14.72%, while the original
accuracy was 63.99 ± 13.11%. For H vs C, the max-
imum CE accuracy was 81.93 ± 14.73% and the ori-
ginal accuracy was 76.80± 15.28%.

For interpreting the model’s generalization, we
used Gradient-weighted Class Activation Mapping
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Figure 11. (a) The effect of time length to classification accuracy. The ‘original’ model represents the general evaluation without
cumulative evidence, ‘mean score’ was based on the mean prediction score to predict the labels, and ‘voting’ mode predicted the
labels according to the most frequency prediction in the cumulation range. © (2023) IEEE. Reprinted, with permission, from
[60]. (b) Activation patterns of functional connectivity out of Grad-CAM. The highlighted regions represent the connectivity
with higher weights in the classification. © (2022) IEEE. Reprinted, with permission, from [59].

(Grad-CAM) to generate the activation patterns of
the functional connectivity in binary classification
(figure 11(b)). Comparing the patterns for the bin-
ary classification between H and O/C conditions, the
functional connectivity between frontal and central
regions was specific to pain. The neurophysiology of
somatic pain involves the integration between frontal
and central lobes, which might be the origin of such
specificity [61].

Individual variation in neural responses to pain
poses challenges for pain assessment model gener-
alization. Transfer learning models are rare due to
this variability [62]. Recent research suggests that
slow alpha frequency and alpha band functional con-
nectivity correlate with individual pain sensitivity,
offering potential neural markers for pain prediction
[59, 63]. Our study demonstrates the potential of
alpha band functional connectivity to mitigate indi-
vidual differences in pain prediction, indicating a
promising avenue for future research in pain assess-
ment using EEG signals. The analysis of activa-
tion patterns suggested the interpretation of the
obstacle in generalization, Salomons revealed that

prefrontal cortex activation is associated with indi-
vidual differences of pain perception [64]. Hence,
the overlap of the frontal region in both pain-related
and individual-related specificity could harden the
generalization.

This research did not effectively involve pro-
cessing individual differences of neural responses to
pain, for example, transfer learning frameworks tak-
ing the individual-specific feature into account. In
the following study, we will develop transfer learn-
ing models to improve the generalizability of the
pain prediction model. Another limitation is that this
study did not consider the influences of thermocep-
tion, for which the innocuous thermal stimulation
can help declare its effects in the future.

2.5.2. Presenter: Alexander McClanahan, MD
(University of Arkansas for Medical Sciences, USA)
Title: Decoding Visual Scenes from Visual Cortex
Spikes Using Deep Learning
Master: Xing Chen, PhD (University of Pittsburgh,
USA)
Theme: Signal analysis
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Recent advancements in machine learning have
revolutionized neural decoding, showcasing remark-
able achievements such as decoding rodent spatial
coordinates via hippocampal place cells, and motor
activity [65, 66].We investigated the potential of deep
learning in decoding visual image stimuli fromneural
spikes across various time bins and brain regions of
the rodent brain.

Electrophysiology recordings and stimulus
presentations were obtained from the Allen Institute
for Brain Sciences Visual Coding Neuropixels Dataset
using the AllenSDK. Three deep learning models
were trained on spike counts across thousands of cor-
tical and subcortical neurons and over 5000 natural
scene stimulus presentations. Models were tested on
held-out test spikes and evaluated for image decoding
accuracy.

Three machine learning models were trained to
decode and classify which image was shown to the
animal solely from visual neural spiking activity, with
results summarized in figure 12. Each model’s decod-
ing accuracies were subsequently compared across
various time bin durations and anatomical regions
of the mouse visual system. In our analysis, time
bin durations of 50 ms and greater appeared to
capture neural information in the most robust way
for decoding. Deep neural networks outperformed
shallow neural networks and linear support vector
machines across nearly all conditions (aside from
small time bin durations, which was felt to be sec-
ondary to overfitting) and within individual brain
regions. VISp (primary visual cortex) outperformed
all other discrete brain regions in decoding accur-
acy, with VISal (anterolateral visual cortex) and LGN
(thalamic) closely behind, and CA1 and CA3 (hip-
pocampal regions) performing at chance, effectively
serving as controls (figure 12(c)). These findings sug-
gest possible avenues for future visual neural decod-
ing efforts and offer insights into optimal neural
decoding algorithm design.

Several limitations exist, however. Data were
obtained from an open dataset provided by the
Allen Institute, which may aid in reproducibility but
inherently limited our ability to acquire raw spik-
ing data. Our deep learning and data analysis there-
fore relied on data obtained by another institu-
tion. The interpretability of this work may be par-
tially limited given the unpredictable nature of the
representations learned by deep neural networks as
evidenced by signs of overfitting described above.
While our decoding networks were validated, trained,
and tested within each individual subject, it remains
unclear how well the models would generalize across
subjects.

While conventional neural decoding algorithms
make assumptions about the encoding of neural
representations, deep learning-based neural decod-
ing makes few assumptions. However, most deep
learning-based neural decoding work has been done

in motor cortex decoding. Accurate decoding of elec-
trophysiology signals from brain structures involved
in visual processing hold great promise in better
informing our understanding of sensory processing,
artificial intelligence, and BCIs for visual prosthet-
ics. Taking a page from themotor decoding literature,
future directions of this work involve implementing a
neural population dynamics approach given the rich-
ness of spiking data in this open dataset. For example,
characterizing the distinct neural trajectories that
visual scene stimuli produce, as has been described
with movement patterns in the motor cortex. Lastly,
while our initial focus was decoding static visual
stimuli, reconstruction of both static and dynamic
(movies) visual stimuli from action potential spikes
would represent a significant breakthrough, as has
been explored in recent years largely with fMRI.

2.5.3. Presenter: Mousa Mustafa (Technische
Universität Berlin, Germany)
Title: Decoding Invasive Brain Signals Using Deep
Learning
Master:Marianna Semprini, PhD (Italian Institute of
Technology, Genoa, Italy)
Theme: Brain implant—other
This research explores the use of deep learning and
classical machine learning models to predict self-
paced hand movements in patients with PD using
ECoG recordings. Deep learning has advanced the
decoding of ECoG data [67], providing insights
into precise hand movements. Adaptive bidirectional
neuromodulation, which combines neurostimula-
tion with real-time brain activity feedback, offers the
potential for more accurate symptom management
for patients with PD [68]. Merk et al [69] conduc-
ted a comprehensive review on the current state of
machine learning use for DBS, and these develop-
ments underscore the promise of deep learning in
neurology, including applications in BCIs and neuro-
prosthetics. The study’s objective is to compare the
accuracy and precision of predictions made by these
models and evaluate their potential for use in closed-
loop DBS treatment for PD.

A variety of classical machine learning mod-
els (Logistic Regression, XGBoost Classifiers, sup-
port vector machine, K-neighbor classifier, Random
Forests, and Gradient Boosting) and deep learn-
ing model architectures (CNN, ResNet, HTNet, and
multilayer perceptron) were used in this study. The
models were trained on data recorded from intra-
cranial electrodes placed at the sensorimotor and
parietal cortex of patients. Preprocessing and fre-
quency band variance features were extracted for
the classical machine learning models using the
py_neuromodulation toolbox, while continuous nor-
malized ECoG data were used to train the deep learn-
ing architectures. After training the models, valid-
ating them via 3-fold cross-validation, and evaluat-
ing them on the balanced accuracy metric, it was
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Figure 12. Neural decoding analysis. (a)–(b) Results of time binning analysis. Mean decoding accuracies of each time bin
condition and machine learning model plotted and reported in the underlying table. (c) Individual brain region decoding
analysis. Mean decoding accuracies across all sessions reported for each brain region and machine learning model, superimposed
on top of a table of values. (d) Grouped brain region decoding analysis. Graphical comparison between mean decoding accuracies
of various grouped brain regions for each machine learning model, along with mean values. (e) Anatomical heatmap of decoding
accuracies of six visual cortex subregions decoded from, overlaid on mouse brain.

observed that the best deep learning model outper-
formed the classical machine learning models on
most subjects in balanced accuracy and in all sub-
jects on the F1 score. A visualization of the processing
pipeline may be found in figure 13(a).

The results of this study demonstrate the poten-
tial of deep learning models in accurately predict-
ing self-paced hand movements using ECoG record-
ings frompatients with PD. The deep learningmodels
outperformed the traditional machine learning mod-
els in accuracy and precision. Specifically, the deep
learning models achieved a balanced accuracy with a

mean of 0.8808 and a standard deviation of 0.0532,
and an F1 score with a mean of 0.7378 and a stand-
ard deviation of 0.0799. In comparison, the classical
machine learning models had a balanced accuracy
with a mean of 0.7875 and a standard deviation of
0.1071, and an F1 score with a mean of 0.5330 and
a standard deviation of 0.1948 (figure 13(b)). These
findings suggest that deep learning models have the
potential to be a valuable tool in the treatment of
PD.

The study’s limitations include a small sample
size, data variability among patients, and lack of
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Figure 13. (a) Overview of the pipeline used for each model group. (b) Comparison of the results on both the balanced accuracy
score and F1 metrics between the classical machine learning (CML) group and deep learning (DL) group.

model interpretability. Future research should focus
on larger and more diverse cohorts, longitud-
inal studies, improving model interpretability, and
exploring the effect of data size on training the
deep learning models. Additionally, exploring real-
world implementation in clinical settings is crucial.
Addressing these aspects will help fully realize the
potential of deep learning models in treating PD.

2.6. Exploring BCIs for neurorehabilitation
For neurorehabilitation, BCIs serve as invaluable
tools by translating neural signals into tangible feed-
back, thereby aiding patients in various situations,
such as post-stroke rehabilitation or mental health
improvement. By continually refining the design,
enhancing feedbackmechanisms, and broadening the
clinical applications of BCIs in neurorehabilitation
settings, we can effectively customize these systems to
meet the unique needs and preferences of each user.

2.6.1. Presenter: Jose Gonzalez-Espana (University of
Houston, USA)
Title: NeuroExo: a low cost non invasive brain com-
puter interface for upper-limb stroke neurorehabilit-
ation at home
Master: Ning Jiang, PhD (University of Waterloo,
Canada)
Theme: Brain non-implanted—control
EEG-based BCIs for real-time control of end effect-
ors in at-home neurorehabilitation demand robust
software and hardware solutions. However, the high
cost of quality EEG amplifiers hinders their commer-
cial viability. We address these challenges by devel-
oping a low-cost BCI system (NeuroExo BCI sys-
tem)with a focus on democratized access. Specifically
designed for upper-limb stroke rehabilitation, the
NeuroExo BCI system serves as a groundbreaking
proof of concept.

The system comprises key components, including
a versatile EEG headset with five dry-comb electrodes
for a form-fitting, universally adaptable solution.

Using cost-effective devices such as the BeagleBone
Black Wireless, ADS1299, and ICM-20 948 for pro-
cessing and data collection, we ensured affordabil-
ity. LabVIEW facilitated seamless integration as the
primary coding language. The NeuroExo BCI system
has real-time capabilities in both open and closed-
loops modes. In open loop mode, raw EEG and iner-
tial measurement unit data were collected at an 80 Hz
rate, while in the closed loop mode, a WiFi-enabled
robotic arm served as the end effector for upper-limb
rehabilitation at a 40 Hz rate.

To validate the system’s clinical utility for at-
home neurorehabilitation, stroke survivors enrolled
at TIRR Memorial Hermann participated in a com-
prehensive program. This included one week of clinic
training followed by six weeks of home therapy with
the NeuroExo BCI system, with progress assessed by a
physical therapist before and after sessions. The goal
of the NeuroExo system is to enhance the feasibil-
ity of at-home neurorehabilitation for chronic stroke
patients, offering a low-cost, portable, reliable, and
user-friendly solution.

In future work, the results of at-home use
by stroke survivors and healthy participants will
be presented. A user-centered analysis of the
system will also be included. Improvements in
the hardware, firmware, and both the back-
end and front-end software are expected to
be implemented based on the user-centered
experience.

2.6.2. Presenter: Florencia Garro, PhD (Italian
Institute of Technology, Genoa, Italy)
Title: Effects of Robotic Assistance in ERP
Modulation for Upper-limb Exoskeleton Control
Master: Ning Jiang, PhD (University of Waterloo,
Canada)
Theme: Brain non-implanted—control
ERP-based BCIs are investigated in robotic neurore-
habilitation to potentially boost brain plasticity and
motor learning by engaging patients in the control
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Figure 14. ERP amplitudes for No_Exo (gray), Exo_AL1 (green), and Exo_AL2 (red) across various time intervals centered on the
Go cue (a) and target reach (b) conditions. © (2023) IEEE. Reprinted, with permission, from [73].

loop [70]. Exoskeletons offer ALs that could be fine-
tuned using ERP-based BCI [71]. However, it remains
unclear if and how brain activity is affected by vary-
ing ALs. We analyze ERP modulation during a stand-
ardized task with different ALs provided by FLOAT,
a novel upper limb exoskeleton [72], to explore the
relationship between brain activity and ALs.

We collected high-density EEG from 10 healthy
right-handed individuals while performing a stand-
ardized reaching task under three distinct con-
ditions: unassisted free movement (No_Exo) and
two levels of FLOAT-assisted movements: low and
high AL (Exo_AL1 and Exo_AL2). Between 100–
350 ms after the Go cue, a cluster-based permutation
test using the Monte Carlo method shows differ-
ences in both Exo_AL1 and Exo_AL2 vs No_Exo
conditions (p < 0.05). The difference is most
pronounced over central, centroparietal, and left
parietal-occipital sensors, including the frontocent-
ral area for Exo_AL2 (figure 14(a)). Between −250–
250ms centered on target reach, we found differences
between the Exo_AL2 and No_Exo condition, most
pronounced over central and left parietal-occipital
sensors (figure 14(b)). The lack of difference between

Exo_AL1 andNo_Exo suggests that themotor scheme
is unchanged, and thus, the two conditions are per-
ceived similarly in that movement phase.

Comprehending the impact of ALs on brain activ-
ity may boost BCI design, aiding in the enhance-
ment of human-in-the-loop optimization strategies
for neurorehabilitation. Specifically, future research
aims to support the development of novel met-
rics based on standardized neuromechanical data
for assessing the performance of both robotics and
patients. Limitations of this study include the self-
paced nature of the task, which may introduce asyn-
chrony in ERPs, and the small sample size. Future
work will address these limitations by expanding the
sample size to enable more robust statistical analyses,
and by exploring additional analyses, such as fre-
quency domain approaches.

2.6.3. Presenter: Angela Vujic, PhD (Massachusetts
Institute of Technology, Boston, USA)
Title: Joie: An Affective BCI for Learning Mental
Strategies for Positive Affect
Master: David E. Thompson, PhD (Kansas State
University, USA)
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Figure 15. Joie’s neurofeedback design with a wearable, dry electrode headband. The user imagines joyous thoughts activate
prefrontal left asymmetries that cause their character to collect coins as a reward. Reproduced from [76]. CC BY 4.0.

Theme: BCI non-implanted—other
Training to enhance left prefrontal brain activity via
neurofeedback may alleviate symptoms of anxiety
and depression [74, 75]. To impart users with posit-
ive mental strategies, we developed Joie, a joy-based
EEG BCI [76, 77]. Joie utilizes prefrontal alpha asym-
metries linked to joyful thoughts as input to control a
character’s movement in a neurofeedback video game
(figure 15). The video game is designed as an end-
less runner where users are rewarded and receive a
score based on how long they sustained left prefrontal
asymmetry. Joyful thoughts during gameplay induce
left prefrontal asymmetry, resulting in positive feed-
back in-game, whereas right prefrontal asymmetry
results in negative feedback. In a lab study involving
20 participants undergoing 15 training sessions each
over two weeks, our experimental group, instruc-
ted to imagine positive music, winning awards, and
other strategies associated with approach and with-
drawal motivation behavior, exhibited a significantly
improved ability to activate alpha asymmetry com-
pared to placebo and control groups. Joie highlights
the potential of prefrontal asymmetries, or applying
the approach and withdrawal motivation model, as
input for affective BCIs. Training these asymmetries
via neurofeedback can impart mental strategies with
potential applications in mental health for reducing
anxious or depressive symptoms.

2.7. Advancements in sampling the sensorimotor
cortex
Recordings obtained from the sensorimotor cortex
have played a pivotal role in advancing BCIs and their
practical applications. Recent innovations in neural
interface technology, such as endovascular electrode
arrays, and advancements in sampling techniques,
such as ultra-high-density (uHD) ECoG record-
ings, offer new avenues for capturing neural signals
and extracting information. Despite these technolo-
gical strides, there remains a crucial need to thor-
oughly characterize the information encoded within
these novel signals and datasets to understand their
applicability.

2.7.1. Presenter: Kriti Kacker (Carnegie Mellon
University, USA)
Title: Spectral features of endovascular ECoG signals
recorded from a Stentrode in human motor cortex
Master: Richard Andersen, PhD (California Institute
of Technology, USA)
Theme: Brain implant—control
The StentrodeTM is a novel endovascular BCI tech-
nology implanted within the superior sagittal sinus
to measure field potentials, similar to ECoG, from
the primary motor cortex, enabling communication
for individuals with severe paralysis [78]. However,
the features of these VECoG signals have not been
fully characterized in humans. Participants with
severe paralysis due to amyotrophic lateral scler-
osis and brainstem stroke have been implanted
in pilot clinical trials in Australia (n = 4) and
in an Early Feasibility study in the United States
(n= 6).

We examined the VECoG signals from one US
participant to identify spectral features associated
with volitional motor intent (figure 16). The recor-
ded field potentials were filtered into standard fre-
quency bands: alpha (8–13 Hz), beta (13–30 Hz),
low gamma (30–80 Hz), and high gamma (80–
200 Hz). For each band-limited signal, we cal-
culated the change in root-mean-square voltage
(Vrms) between rest and movement epochs, quan-
tifying the percentage change of Vrms movement
from rest (termed as modulation depth) for each
trial.

We investigated the features of the Stentrode sig-
nals and identified the spectral characteristics that
exhibited strong and consistent changes in amp-
litude between rest and attempted movement con-
ditions. The average modulation depth across all
channels was 22.77 ± 4.09% in the low gamma band
and 22.53 ± 2.04% in the high gamma band dur-
ing right hand movement. The classifier perform-
ance for both the gamma bands remained stable,
with the low gamma classifier achieving a mean
accuracy of 93 ± 3% and the high gamma classi-
fier achieving a mean accuracy of 96 ± 3%. These
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Figure 16. (a) The Stentrode device with 16 electrodes. (b) The Stentrode is a flexible electrode array implanted in the superior
sagittal sinus using stent technology and sits adjacent to the primary motor cortex. The participants are instructed to attempt
movement of specific body segments based on the cues on the screen. The data recorded by the Stentrode is sent wirelessly to the
external telemetry unit by the implantable receiver transmitted unit. The signal control unit sends the data further to the
computer. (c) Sample VECoG recorded from eight channels during alternating cues of rest and go. (d) Modulation depth is
calculated as the percentage change in the average amplitude during attempted movement window (Sgo) with respect to the
average amplitude during the rest window (Srest). (e) Example of modulation depth values for VECoG signals across all channels
in the low gamma and high gamma bands while the participant attempted to move their right hand during one session. ∗∗

Indicates t-test was significant at p< 0.01.

results suggest that the Stentrode reliably detects voli-
tional motor signals and maintains long-term sta-
bility for up to 10 months post-implantation. Our

preliminary analysis indicates that these endovas-
cular neural signals exhibit properties similar to
those reported for ECoG-based measures of motor
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Figure 17. A focal point overlying the sensorimotor cortex around the 10–20 position C3 shows the highest activation. Ten
electrodes were color-coded according to the finger with the greatest significance in ERD/S change, one finger includes
information from several fingers (Multi-finger).

intent. Future research should explore VECoG
signals over a longer time period and across more
participants to confirm that the BCI can operate
reliably and effectively over the course of several
years.

2.7.2. Presenter: Christoph Kapeller, PhD (g.tec
medical engineering GmbH, Austria)
Title: Increased spatial resolution reveals separated
EEG activation of individual finger movements
Master: Christian Herff, PhD (Maastricht University,
Netherlands)
Theme: Signal acquisition
The study of high-density EEG electrodes is currently
of great interest in BCI research. The 10–20 system,
proposed by Jasper in 1958 [79], and the 10-10 exten-
sion by Chatrian et al in 1985 [80], are the estab-
lished standards by the American EEG society. In
2001, Oostenveld introduced the 5% system positions
[81]. Our proposed setup with active uHD electrode
records EEG via scalp grids with an electrode spa-
cing of 8.6 mm, compared to a median Euclidean dis-
tance of 35.4mm in the 10–10 system (figure 17). This
represents a four times higher spatial sampling, com-
bined with an increased R2 of the cross-channel EEG

from 0.18 to 0.44, indicating a net increase of inform-
ation content over all EEG signals [82]. Studies have
shown that biomarkers for individual finger exten-
sions achieved classification accuracy for two fingers
by +6%–7% from 10–10 EEG to uHD EEG [83,
84]. Specifically, with a grand average accuracy of
64.8% and a maximum of 79.2% for index versus
ring finger [82]. A within-subject analysis of the uHD
EEG vs 10–10 EEG showed a clear reduction of chan-
nels with multi-finger activation with more focused
single finger sites over the motor cortex. Moreover,
it is possible to discriminate between hand gestures
and their imagination, namely, rock-paper-scissors,
with 72.7% and 71.3%, respectively, in a pair-wise
classification [85], demonstrating the utility of a uHD
EEG.

A subject specific example is provided in figure 18,
which represents the superimposed finger activity
from Subject 1 on the electrode distribution compar-
ison plot (a) and the MNI head (b). Results show the
analysis of the beta band (13–30 Hz), which was used
for feature extraction. After calculating the ERD/S,
a Wilcoxon signed-rank test was used to find sig-
nificant channels with movement-related beta band
changes. Significant channels are colored respect-
ively for each finger andmulti-finger channels, which

24



J. Neural Eng. 22 (2025) 022001 S Cernera et al

Figure 18. Significant channels marked in red from the single finger movement paradigm comparing the uHD EEG and 10–10
EEG system. The bubble radius reflects the ERD/S amplitude. The table states the region of interest selected, the number of
significant channels and the ratio of single and multi-finger activation.

were found to be active for several individual fingers.
Figure 18 shows thatUHD/10–10 beta power revealed
11%/11% single-finger, 1%/61% multi-finger, and
88%/28% no-finger sites, respectively. ERD/S bubble
plots reflect the radius from the active channels’
ERD/S amplitude.

As our study included only two subjects, the res-
ults are not generalizable. A larger cohort, encom-
passing both male and female participants, as well
as varying preferred hand dominance, is neces-
sary to improve the robustness and applicabil-
ity of the findings. For optimal system perform-
ance of the uHD EEG system, hair removal is
essential, as effectiveness diminishes with increased
hair length. Comprehensive testing across various
hair types is necessary to identify potential lim-
itations. Additionally, as the number of electrode
grids increases, the system’s form factor becomes
more complex, leading to extended setup times and
reduced user comfort. Future research should integ-
rate uHD EEGwith source reconstruction techniques
to further refine high-resolution neurophysiological
localization through non-invasive recordings.

2.7.3. Presenter: Simon Geukes (UMC Utrecht Brain
Center, Netherlands)
Title: uHD ECoG recordings of the human sensor-
imotor cortex
Master: Victoria Peterson, PhD (Instituto de
Matemática Aplicada del Litoral, Santa Fe, Argentina)
Theme: Signal analysis

ECoG is a popular recording method for clinical
and research purposes, including BCIs [86]. Clinical
ECoG grids have 10 mm inter-electrode distance
(IED), while HD ECoG grids have 3–4mm IED. Both
clinical and HD ECoGmay spatially undersample the
cortex, as the cortical resolution is higher than the res-
olution offered by these grids [87, 88]. uHD ECoG,
which offers submillimeter resolution, may resolve
this. However, whether uHD ECoG can record dis-
tinct neural signals without considerable spatial over-
sampling remains unclear.

To investigate this, we simultaneously recorded
intraoperative HD and uHD ECoG (figures 19(a)–
(b)) from the sensorimotor cortex while parti-
cipants were awake (n = 3) or under general anes-
thesia (n = 1). During awake surgeries, the parti-
cipants performed motor mouth or hand tasks. To
verify signal quality, we computed the power spec-
tra of the recorded signals. To investigate overlap
between electrodes as a function of IED, we cal-
culated the distance-averaged correlation: the aver-
age correlation coefficient between equidistant elec-
trode pairs, for different frequency bands. Lastly,
to quantify functional responses, we regressed the
mean high-frequency band power (64–128 Hz) to the
tasks.

We found that: (1) In all participants, the 1/f
decay and noise peaks were similar in the power
spectra of HD and uHD grids; (2) In three par-
ticipants, HFB power overlapped only moderately
(r: 0.35–0.65) between electrodes at 0.9 mm IED.
This is illustrated in figure 19(c), which shows the
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Figure 19. (a) Left panel: illustration of the 96-channel HD grid (Ad-Tech Medical, Oak Creek, USA). A 128-channel grid (PMT
Corporation, Chanhassen, USA) with the same IED and exposed diameter was used as well. Right panel: illustration of the uHD
grid (CorTec Neuro, Freiburg, Germany). (b) Distance-averaged correlation for the HD grid (left panel) and uHD grid (right
panel) of one participant. The frequency bands (in Hz) are denoted by the color coding. (c) High-frequency band response
(64–128 Hz) to a motor mouth task for the HD grid (left panel) and uHD grid (right panel) of one participant. HD electrodes
overlaying the uHD grid are not shown. Excluded electrodes are colored black. Electrode radius increases with the R2 value.
Circumvented electrodes responded significantly to the task. (a) and (c) are Adapted from [89]. CC BY 4.0.

distance-averaged correlation for the HD and uHD
grid of one participant. (3) In one participant, 70%
of the uHD electrodes significantly responded to the
task, revealing a distinct spatial pattern where cer-
tain electrodes responded significantly while adjacent
ones did not. Taken together, we conclude that uHD

ECoG does not spatially oversample the sensorimo-
tor cortex. Further investigation into optimal record-
ing procedures, re-referencing methods, and analyt-
ical methods to quantify single electrode responses
are needed to fully leverage the potential of uHD
ECoG.
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2.8. Novel techniques for advancing BCI
performance
Integrating multiple modalities, such as incorporat-
ing both brain signals and other physiological sig-
nals as input, merging brain recordings with stimula-
tion techniques, or exploring new analytic techniques
hold promise for advancing BCI control and decod-
ing capabilities. By harnessing the complementary
strengths of diverse signals, BCI systems stand to
benefit from heightened efficacy and enhanced accur-
acy, thereby amplifying their use in real-world applic-
ations.Moreover, developing innovative strategies for
encoding movement patterns, optimizing dynamic
stopping methods for diverse applications, and aug-
menting motor skill acquisition may unlock new
dimensions of BCI functionality.

2.8.1. Presenter: Tan Gemicioglu (Cornell University,
USA)
Title: Transitional Gestures for Enhancing ITR and
Accuracy in Movement-based BCIs
Master: Ning Jiang, PhD (University of Waterloo,
Canada)
Theme: BCI non-implanted—control
MI and motor attempt-based BCIs enable users to
communicate by sequentially performing different
actions. Conventional interaction methods use a set
of body parts or motions with a one-to-one map-
ping to commands. However, this mapping makes it
challenging to use movement for high-speed spellers
due to constraints in the number of possible com-
mands. A recent interaction method, BrainBraille,
uses a pseudo-binary encoding where up to six body
parts can be tensed simultaneously and mapped onto
a Braille character for language-independent alpha-
betic encoding. However, non-invasive BCI modalit-
ies such as EEG and fNIRS have limited spatial spe-
cificity and often struggle to distinguish simultaneous
movements.

We propose a new method encoding transitions
between gestures in different body parts to combinat-
orially increase the size of the command set by using
transitional gestures where information is extrac-
ted from transitions between different movements to
improve accuracy, number of possible commands,
and ITR. In a pilot study using the NIRx NIRSport,
participants tensed the left hand and right hand in
transitional patterns in a random order for 40 trials
each.We applied a 0.09Hz low-pass Butterworth filter
and performed independent component analysis. A
support vectormachine obtained 81%accuracy in left
vs. right classification while obtaining 92% accuracy
in left-to-right vs right-to-left classification, demon-
strating the accuracy benefits of transitional gestures.

Then, we adapted the BrainBraille encoding
scheme with a transitional encoding. BrainBraille

is currently limited to a maximum of three sim-
ultaneous movements and uses 27 out of 37 pos-
sible commands.Our transitional BrainBraille encod-
ing would allow P(6, 3) = 120 commands, allow-
ing a wider range of characters while maintaining the
same constraints and potentially increasing ITR from
BrainBraille’s current ITR of 143 bits per minute to
218 bits perminute. Our findings suggest that a trans-
itional encoding can make a movement-based speller
more feasible by increasing accuracy, speed, and flex-
ibility in modalities with limited spatial specificity.

2.8.2. Presenter: Ceci Verbaarschot, PhD (University of
Pittsburgh, USA)
Title:The effect of artificially created sensory feedback
on motor cortex activity during task performance
Master:Marianna Semprini, PhD (Italian Institute of
Technology, Genoa, Italy)
Theme: BCI implant—other
ICMS of the human somatosensory cortex induces
localized sensations on an individual’s paralyzed hand
and can enhance control of a brain-controlled pros-
thetic arm [90, 91]. Typically, there exists a direct
interaction between naturally occurring tactile sen-
sations and motor function. Ongoing sensory input
influences the activity of the motor cortex, leading to
intricate patterns of both inhibitory and excitatory
responses. We investigated whether artificial touch
(created via ICMS) could have a similar effect on
motor cortex activity.

Two participants with tetraplegia with implanted
intracortical microelectrode arrays in their somato-
sensory and motor cortices (figure 20(a)) underwent
ICMS trains of various amplitudes (40, 60, 80 µA)
and frequencies (50, 100, 200 Hz), while they pass-
ively watched amovie. Next, we investigated the effect
of ICMS (50 Hz, 60 µA) while they attempted (full
hand grasp or individual finger) movements during
an engaging Guitar Hero-like game (figure 20(b)).
We found that higher stimulation amplitudes lin-
early increased the global population activity in the
motor cortex (figure 20(c)). Meanwhile, frequency
had varying effects in which stimulation at 50 Hz had
a largely excitatory effect, 200 Hz had a predomin-
antly inhibitory effect, and lastly 100 Hz had mixed
effects depending on the electrode (figure 20(c)).
Despite prominent effects on motor cortex activity,
offline decoding of three individual fingers showed
promise (89% accuracy) during 50 Hz ICMS.

Our findings suggest that ICMS not only creates
an artificial sense of touch during motor control but
also modulates motor cortex activity in a stimulus-
dependent manner. Under normal circumstances,
dynamically evolving sensory input likely modulates
motor cortex activity, enabling us to, e.g. tighten
our grip when we sense that an object is slipping
from our hands. In future research, we investigate
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Figure 20. Overview of study design and results. (a) Schematic illustration of the BCI setup. (b) Experimental design using either
open-loop (left) or closed-loop (right) stimulation. (c) Main results of intracortical microstimulation in the somatosensory
cortex on the motor cortex for different amplitudes (top) and frequencies (bottom).

whether ICMS could play a similar functional role
during motor control. To do so, we will manipulate
the congruency of the ICMS-evoked sensation loca-
tion and the ongoing motor task. Often, participants
will feel a sensation on the same finger that they
attempt to move during the Guitar-Hero like game.
Occasionally, we will evoke a sensation on a differ-
ent finger, one that is incongruent with the ongoing
motor task. If we find the motor cortex to encode
the congruency of the sensory signal with the motor
task, this will provide credence that ICMS can serve
as a functional source of information during motor
control.

2.8.3. Presenter: Michael Wimmer (Know Center
Research GmbH, Austria)
Title: Toward hybrid BCI: EEG and pupillometric sig-
natures of error perception in an immersive naviga-
tion task in VR
Master:Marianna Semprini, PhD (Italian Institute of
Technology, Genoa, Italy)
Theme: BCI non-implanted—other
The latest wearable devices used to visualize VR con-
tent are equipped with built-in sensors and cameras
to acquire user-specific physiological data, such as
gaze or pupil size. Interactions with virtual envir-
onments may sometimes seem erroneous to users,
as the behavior of the VR might not align with the
user’s intentions or expectations. Previous research
has shown that EEG responses to errors, i.e. ErrPs, can
enhance the performance of BCIs [92]. The success-
ful decoding of errors allows systems to take corrective

actions, e.g. to stop unwanted commands or provide
visual aids. Since most error classifiers rely on brain
signals, this study explores the potential of pupillo-
metric signals for hybrid error decoding approaches.

For this purpose, we designed an interactive VR
flight simulation in which 19 participants navigated a
glider through a series of targets (figure 21). At ran-
dom intervals, participants encountered unexpected
behaviors or changes in the simulation, such as sud-
den displacements of the target locations and unin-
tended glider movements.

The grand average responses revealed pupil
dilations peaking approximately 600 ms after the
error events. ErrPs were consistent with the existing
literature [94]. The pupil dilations exhibited consid-
erable variability across participants, which affects
the performance and generalizability of classifiers.
However, hybrid decoding approaches could signific-
antly improve the accuracy in reduced EEG setups,
i.e. using only one or three electrodes, by up to 3%–
4% on average and up to 8% at the participant level
[93]. Studying the impact of such setup reductions
has practical relevance, as they increase the BCI’s
usability in real-world applications. Further analysis
of the behavioral data showed that participants took
on average more than 400 ms to react to error events.
The offline error decoders we implemented could
detect errors up to 50 ms faster than participants
responded to them [95].

The results of this work suggest that error-related
pupillometric responses have the potential to improve
existing error decoding approaches and hence, the
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Figure 21. Overview of the experimental setup. The participant is seated in a glider, wearing an EEG cap (a) and an HMD (b) to
interact with the virtual environment (c). The joystick of the HMD (d), used to navigate the virtual glider, is attached to the
physical glider’s control stick. Adapted from [93]. CC BY 4.0.

design of hybrid BCIs [93]. Next steps in advancing
hybrid classifiers should include research on suit-
able features derived from pupil signals. Similarly,
investigations into the impact of different data fusion
approaches could further enhance the decoding per-
formance. Finally, these contributions should be
tested in real-time scenarios where the VR adapts
dynamically to errors.

2.8.4. Presenter: Mushfika Sultana (University of
Essex, United Kingdom)
Title: Assessing the impact of tDCS on the enhance-
ment of race driving skills
Master: Eli Kinney-Lang, PhD (University of Calgary,
Canada)
Theme: BCI non-implanted—other
Recently, non-invasive brain stimulation like tDCS
has become popular and has been applied to focally
change neuronal activation [96]. Although tDCS
seems to be a promising approach for enhancing com-
plex motor skill acquisition, very few studies have
investigated the potential role of brain stimulation on
race driving [97]. We have attempted an initial eval-
uation of the impact of anodal tDCS on race train-
ing. Toward this goal, we have analyzed multimodal
experimental data consisting of EEG and telemetry
from a driving simulator of 11 novice participants.

20 min of active or sham tDCS (PlatoWork by
PlatoScience, Copenhagen, Denmark) was applied
before a race driving task. Subjects were randomly
and blindly assigned to one of two tDCS groups
(6 active, 5 sham) balancing potential confounding
factors (age, gender, driving proficiency, corrected
vision). Each participant went through 10 experi-
mental sessions (20 laps per session). The tDCS effect
was evaluated through amixed-designANOVAwhere

the lap time gain as a result of training was the
response variable, the tDCS group was the between-
subjects factor and the session index was the within-
subjects factor. Furthermore, we assessed the average,
standard deviation, and significance (with unpaired,
two-sided Wilcoxon rank sum tests) of the lap times
per group and session. Although no significant effect
of tDCS on lap time gain can be established (F= 0.63,
p = 0.76), additional post-hoc analysis showed that
subjects in the active tDCS group exhibited better
outcomes in sessions where intense learning takes
place. Specifically, active-tDCS subjects performed in
the last session significantly better (by almost 3 s on
average) than sham-tDCS (active: 89.4 ± 9.5, sham:
92.0 ± 10.5, p < 10−17), although performance
was balanced (no statistically significant difference
between the two groups) in the first session.

These preliminary results suggest that tDCS may
be effective in supporting the learning of race driving,
although the impact is not strong enough to be clearly
observed in a session-wise, mixed-design ANOVA. It
is important to note that the small sample size may
account for the absence of a pronounced effect. Our
findings indicate that tDCS can help novice users
learn race driving more quickly, but the effect was
modest and requires confirmation in future research.
Further studies with larger populations will seek to
clarify and validate these results.

2.8.5. Presenter: Sara Ahmadi, PhD (Radboud
University, Netherlands)
Title: a model-based dynamic stopping method for
code-modulated visual evoked potentials BCI
Master: Xing Chen, PhD (University of Pittsburgh,
USA)
Theme: Signal analysis
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BCIs are evolving beyond mere assistive technology,
with dynamic stopping methods offering a means
to expedite their speed [98]. These methods allow
for decisions to be made regarding symbol ejec-
tion or further information acquisition based on the
decoder’s confidence level, thereby leveraging trial
variance to enhance speed without compromising
overall accuracy. However, conventional optimiza-
tion metrics like symbols per minute and ITR may
not adequately reflect systemperformance for specific
applications or user types.

In our proposal, we advocate for a model-
based approach harnessing analytical insights into
the underlying classifier model. By establishing that
similarity scores between observed and predicted
responses for both target and non-target classes fol-
low Gaussian distributions, we frame the dynamic
stopping as a binary hypothesis decision problem.
Here, different costs are assigned to various courses
of action, with the cost ratio (CR) representing the
ratio between the cost of False Alarm andMiss. Using
a likelihood ratio test based on Bayes criterion, we
determine the decision region where the total risk,
calculated as the sum of costs weighted by the like-
lihood of each action, is minimized [99].

Preliminary findings on a code-modulated visual
evoked potential dataset [100] demonstrate the effic-
acy of our approach. By adjusting theCR,we observed
varying trade-offs between speed and accuracy. For
instance, with a small CR, the system exhibits rapid
response times (average time = 318 ms for CR = 1)
but relatively high error rates (Err = 81.9% for
a 36-class problem), which may suit applications
where post-processing, such as employing a lan-
guage model, can compensate for lower accuracy.
Conversely, increasing the CR to CR = 106 extends
response time (average time = 2.32 s) while sub-
stantially reducing error rates (Err = 22.9%), ren-
dering the system more suitable for error-sensitive
applications.

3. Conclusions

The Tenth International BCI Meeting provided a
platform for trainees to showcase their research and
engage in meaningful discussion with experts and the
BCI community throughmaster classes. The sessions,
organized by the Postdoc & Student Committee of
the BCI Society, were designed to foster interactions
between trainees and established researchers and
encourage a conducive environment for learning and
collaboration. The master classes are a unique way to
showcase the breadth of BCI research, illuminating
both the challenges and breakthroughs encountered
across various fields.

The selected summaries featured in this paper
offer insights into the multifaceted topics explored
in BCI research, reflecting the ongoing efforts of
researchers to advance technology. Divided into

eight specific themes, including speech decoding, MI,
and closed-loop BCIs, each summary presents the
presenter’s work, preliminary findings, and conclu-
sions. Notably, the inclusion of trainees and senior
researchers as co-authors emphasizes collaboration
and mentorship within the BCI community. The
master classes will continue to highlight the remark-
able contributions of BCI trainees at the upcoming
Eleventh International BCI Meeting.
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