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Abstract— In this paper we use a collaborative brain-
computer interface to integrate the decision confidence of
multiple non-communicating observers as a mechanism to
improve group decisions. In recent research we tested the idea
with the decisions associated with a simple visual matching
task and found that a collaborative BCI can significantly
outperform group decisions made by a majority vote. Here
we considerably extend these initial findings by: (a) looking
at a more traditional (and more difficult) visual search task
involving deciding whether a red vertical bar is present in a
random set of 40 red and green, horizontal and vertical bars
shown for a very short time, (b) using spatio-temporal CSP
filters instead of the spatio-temporal PCA we previously used
to extract features from the neural signals, while also reducing
the number of features and free parameters used in the system.
Results obtained with 10 participants indicate that for almost
all group sizes our new CSP-based collaborative BCI yields
group decisions that are statistically significantly better than
both traditional (majority-based) group decisions and group
decisions made by a PCA-based collaborative BCI.

I. INTRODUCTION

A Brain-Computer Interface (BCI) is a communication
and/or control system that allows the user to interact with the
world through the recording and analysis of the user’s brain
activity. This technology has been tested in a large variety
of applications, most typically to allow people with severe
motor disabilities to communicate and operate actuators of
different kinds [1], [2], [3], [4], [5]. However, in recent years,
another avenue has started to emerge: using collaborative
BCIs (cBCIs) for human augmentation, e.g., for improving
the perceptual or cognitive performance of groups of users.
In this paper we will introduce a cBCI that can improve
group decision-making in a difficult visual search task. We
will start by reviewing the areas of cBCI and decision making
in the next section, and we will look at the contributions of
this paper in Section I-B.

A. Decision Making and cBCIs

Decision-making has been studied for decades as under-
standing its processes and dynamics has important implica-
tions in many fields, including psychology and politics.

Extensive literature has shown that making decision is
groups can be powerful (see for example [13], [14], [15],
[16]) and can be superior to making individual decisions in
many different contexts, including settings where individ-
uals are involved in visual tasks [17]. However, there are
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circumstances in which the benefits of group decisions can
be disadvantageous [18], [19]. For example, this happens
when decisions have to be taken within a time window
that is incompatible with communication within the group,
when group decisions are affected by individual indecisions
or when decisions are hijacked by a particularly influential
member [14], [16], [17].

There is today also a reasonably consistent body of knowl-
edge regarding the areas of the brain involved in making
decisions and the event-related potentials (ERPs) associated
with them (e.g., see [6], [7], [8], [9]). These have even been
exploited for human augmentation in single-user BCIs that
improve human decision accuracy or speed [10], [11], [12].

Several studies and applications of cBCIs have been
proposed in the last few years. These include cBCIs for
a movement planning task [20], the visual discrimination
between rapidly presented pictures of cars and faces [21],
[22], detecting the onset of visual stimuli presented on
a black background [23], joint 2–D cursor control [24],
rapid discrimination of aeroplanes in aerial images of urban
environments [25], [26] and group decision-making for a
simple visual-matching task [27], [28].

Most of these cBCIs have been shown to improve either
speed or accuracy over single non-BCI users. However, for
the first time, in [28] cBCI-assisted groups were provably
more accurate than identically-sized groups performing the
same tasks by traditional means. As the present work is an
extension of [28], we will briefly summarise that work below.

In [28] we developed an EEG-based cBCI for improving
group decisions in a task where participants had to decide
whether or not two sets of shapes were identical. These were
presented for a very short time, thus making individual (non-
BCI) decisions difficult and often erroneous. Our approach
was unusual in relation to previous cBCI studies in that we
exploited not only neural data but also behavioural measures
of confidence. That is, in addition to ERPs we also recorded
the response times (RTs), as these are influenced by, and
thus can reveal, the confidence in a decision [29]. Candidate
neural features were extracted from ERPs via spatio-temporal
PCA. We then optimally selected, combined and used neural
and behavioural features extracted during a decision to esti-
mate the objective level of confidence of each observer mak-
ing that decision. To perform feature selection and parameter
identification we used information of whether the response
of our observers in each decision was correct or incorrect,
on the assumption that participants were on average less
confident in erroneous decisions than in correct ones. Group
decisions were then determined by a modified weighted-



majority algorithm which dynamically weighed individual
decisions based on each observer’s estimated confidence.
Results showed that cBCI-assisted group decisions obtained
in this manner were almost always statistically better than
those obtained by equally-sized (non-BCI) groups adopting
the majority rule.

B. Contribution

The present study improves and extends the cBCI de-
scribed in [28] and summarised in the previous section, along
two directions.

Firstly, we investigated whether a collaborative BCI ap-
proach can be applied to a visual search task that is percep-
tually and cognitively different from (and harder than) the
visual matching task previously tested. In the visual search
task, observers were asked to search for a specific target
amongst a large number of non-targets. The high perceptual
load (due to the large number of non-targets presented in
each display), the difficulty of discriminating between targets
and non-targets (due to the shared features between the target
and the non-targets) and the fast presentation of each display
render decisions quite hard to make in this task.

Secondly, we replaced the spatio-temporal PCA we used
previously to extract the neural features from ERPs with a
spatio-temporal Common Spatial Pattern (CSP) filter. CSP
filtering was adopted for its marked ability to capture im-
portant aspects of the data (as already demonstrated in
several BCI applications [30], [31], [32], [33]) allowing us to
significantly reduce the number of neural features required by
the system (from the 24 PCA components used originally),
thereby promoting generalisation. Also, as CSP is two orders
of magnitude faster than PCA, this allowed us to extend the
analysis to both a response-locked ERP representation (as
was done in [28]) and a stimulus-locked representation. As
the latter may contain early indications of perceived task
difficulty (as suggested in [9]), we hoped this would also
correlate with decision confidence further increasing cBCI-
assisted group-decision accuracy.

II. METHODOLOGY

A. Participants

We gathered data from 10 participants (aged 28.5 ± 6.0,
4 females) with normal or corrected-to-normal vision who
gave written informed consent to take part in the experiment.
The research is part of a project funded by the UK’s MoD
through DSTL which received MoD and University of Essex
ethical approval in July 2014.

B. Stimuli and Tasks

Participants were asked to undertake an experiment con-
sisting of 8 blocks of 40 trials, for a total of 320 trials.
Each trial started with the presentation of a fixation cross
in the middle of the screen for 1 second (Figure 1). This
time allowed participants to get ready for the presentation of
the stimuli and allowed EEG signals to get back to baseline
after the response from previous trials. Then participants
were presented with a display containing a set of 40 bars,

either green (RGB (0,1,0)) or red (RGB (1,0,0)), vertical or
horizontal, on a black background. This lasted for 250ms
and was immediately followed by a mask for 250ms. The
mask was a black and white 24×14 checkerboard. Following
the presentation of the mask, participants had to decide, as
quickly as possible, whether or not there was a vertical red
bar, the target, among the vertical green, horizontal green
and horizontal red bars, the distractors. Their choice was
indicated by pressing the left mouse button to signal the
presence of the target and the right mouse button to signal
its absence. RTs were recorded. The mouse was controlled
with the right hand.

The position of the bars was randomly selected (without
allowing overlaps between bars) within a rectangular screen
region subtending approximately 17.7 degrees horizontally
and 11.9 degrees vertically. Bars subtended approximately
1.09 degrees in their longer dimensions and 0.36 degrees in
their shorter dimension. The number of distractors of each
type was also randomly selected, but ensuring that at least
one distractor of every type was present in a display. Targets
(red vertical rectangles) were presented in 25% of trials.

The random displays used in the experiment were precom-
puted and stored so that identical sequences of stimuli were
used for all participants. This was done in order to make it
possible to test offline the benefits of combining the decisions
of different participants to form group decisions.

Briefing, preparation of participants (including checking
and correcting the impedances of the electrodes used for
EEG recordings) and task familiarisation (2 blocks of 10
trials each) took approximately 45 minutes. Participants were
comfortably seated at about 80 cm from an LCD screen.

C. Data Acquisition and Preprocessing

RTs were measured by time-stamping the clicks of an
ordinary USB mouse. As indicated in [28], this produces a
maximum jitter of 14ms which is negligible when compared
with even the shortest RTs.

The neural data were recorded from 64 electrode sites
using a BioSemi ActiveTwo EEG system. Each channel was
referenced to the mean of the electrodes placed on each
earlobe. The recorded data were sampled at 2048 Hz and then
band-pass filtered between 0.15 and 40 Hz with a 14677-tap
FIR filter obtained by convolving a windowed low-pass filter
with a windowed high-pass filter. Artifacts caused by eye-
blinks and other ocular movements were removed by using
a standard subtraction algorithm based on correlations. The
data were then low-pass filtered with an optimal 820-tap FIR
filter designed with the Remez exchange algorithm [34] with
a pass band of 0–6Hz and a stop band of 8–1024 Hz. The
data were finally down-sampled to a sampling rate of 16 Hz.

The EEG data were segmented into epochs using both a
response-locked and a stimulus-locked approach. Response-
locked epochs lasted 1500ms and started 500ms before the
user’s response, while stimulus-locked epochs also lasted
1500ms but started in synchrony with the presentation of
the stimulus. Each ERP was thus represented by 48 samples
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Fig. 1: Sequence of stimuli presented in each trial.

from each of the 64 available channels, i.e., a total of 3,072
values.

D. Feature Extraction

We used neural and behavioural features to identify the
confidence of the user in the decision made in each trial of
our experiment. These are described below.

1) Neural features: CSP filtering projects the multi-
channel EEG data into a low-dimensional spatial subspace.
The projection matrix is constructed in such a way to max-
imise the variance of the different classes of the signals. In
this work, the task that we wanted to carry out, discriminating
between correct and incorrect decisions (more on this later),
was a standard two-classes task and, so, the CSP filter
maximised the variance between the neural signals associated
with these two classes.

After applying CSP to the training set for each subject, we
obtained a 3, 072× 3, 072 projection matrix, the columns of
which were the spatial patterns. These are organised in such
a way that the first and the last columns of the matrix are the
most significant patterns, i.e., those that have the maximum
difference in terms of variance.

To obtain maximum efficiency and generalisation, we took
the decision to start from the smallest number of features and
increase this number if required. So, we chose only the first
and the last spatial patterns as neural features to represent
decision confidence. As this worked well, we didn’t have to
revisit this decision.

2) Response times: We used RT as a behavioural feature
that can indicate the confidence of the user in each decision,
as shorter RTs tend to be more frequently associated to cor-
rect (more confident) decisions than incorrect (less confident)
ones (as suggested in [29] and empirically verified in [28]).

E. Making group decisions

In our system, after gathering the decisions of all the
members of a group, these were weighed proportionally
to the confidence of each user. The group’s decision was
computed as follows:

dgroup = sign(w1 · d1 + w2 · d2 + · · ·+ wn · dn) (1)

where n is the group’s size, di = {−1, 1} is the decision
of participant i = 1, · · · , n and wi ∈ R+ is the weight
associated with the confidence of participant i in the current
decision. The cBCI was responsible for computing the wi’s.

As usual in BCI, also the wi’s are computed through a
process that relies on machine learning to optimise perfor-
mance on a participant-by-participant basis. The problem is
that in order to estimate decision confidence, we would need
to have ground-truth information on the actual confidence
with which the decisions in an appropriate training set were
made. However, this information is not directly available.
We could ask a participant to rate his or her degree of
confidence in a decision, but this measure would likely be
biased and not objective. In [28] we found that we could form
an objective (but approximate) decision-confidence training
set by relabelling the trials where the decision made by a
participant was correct as “confident” (−1 label) and the
trials where the decision was incorrect as “non-confident”
(+1 label). Thus, the BCI system needs to predict if a
user gave a confident (correct) response or a non-confident
(incorrect) one.

For this, we used the Least Angle Regression (LARS) [35]
method. In our LARS the predicted confidence in a decision
is given by

f = a0 +
∑
i

ai · xi (2)

where ai are constant coefficients (to be identified via a
training set) and xi are the two CSP neural features and the
RT representing an epoch. Note that in [28] 24 PCA-based
neural features and the RTs were used to train two different
classifiers the outputs of which were then combined to obtain
a confidence estimator. However, in this work we found that
this added complexity wasn’t necessary. So, here neural and
behavioural features have been combined in a single linear
model, which further reduced the free parameters in our
cBCI.

Once a confidence estimate, fi, is available for a particular
decision of participant i, we compute the weights used in
Equation (1) for that decision using the following negative
exponential weighting function:

wi = exp
(
− (2.5 + fi)

)
. (3)

The choice of this function was based on prior experi-
ence [28] and was motivated by the desire to allow confident
users to count substantially more than uncertain users in the
group’s decision.

In order to ensure that results were not affected by over-
fitting, we made use of 10-fold cross-validation so that the



Fig. 2: Participant mean errors averaged over 320 trials.

estimation of the system’s performance and the feature-
extraction/machine-learning elements of the cBCI (namely,
CSP filtering and LARS) were always performed on inde-
pendent data sets. Results are reported in the next section.

III. RESULTS

Since the main aim of this study was to improve human
performance, let us start our analysis by looking at the
errors of each participant in the visual search task used
in our experiment. As shown in Figure 2, participants had
very different individual levels of performance, with error
rates ranging from 6.25% to 35.63%. The average error
rate was 21.0% with a standard deviation of 9.2%. For
comparison in [28] the average error rate was 12.5%, thus
corroborating our hypothesis that the visual search task we
chose is significantly harder than our previous task.

We then applied our method to the
(
10
n

)
groups of size

n that could be assembled with our 10 participants, for
n = 2, 3, · · · , 10. For each group, we computed the errors
made by the group when the decision was made according
to both the majority rule and our confidence-based rule
in Equations (1)–(3). Then, we averaged the errors over
different group sizes. Figure 3 shows the mean decision-
error rate for different group sizes using the majority rule as
well as our confidence-based rule. For comparison, for the
latter we considered both our current cBCI (based on two
CSP features and RT) as well as a version based on 24 PCA
components selected as in [28].

To test if the observed differences in error rates of Fig-
ure 3 were statistically significant, we compared the error
distributions within each group size by using the one-tailed
Wilcoxon signed-rank test. We have chosen this test since all
methods (i.e., majority and the two confidence-based cBCIs)
were applied to the same groups. The corresponding p-values
and W statistics (in brackets) are reported in Table I. Sample
sizes (the number of groups of each size) are indicated
in the last row of the table. As indicated by the “Wins”
column, which reports the number of group sizes where p-
values were below the 0.05 statistical significance level, for
almost all group sizes our new CSP-based collaborative BCI

Fig. 3: Average percentage of errors vs group size for group
decisions made by a CSP-based cBCI, a PCA-based cBCI
and the majority rule.

yields group decisions that are statistically significantly better
than both traditional (majority-based) group decisions and
group decisions made by a PCA-based collaborative BCI.
The PCA-based BCI is also statistically significantly better
than majority as we found in [28]. Note also that the PCA-
based cBCI is never better than the CSP-based cBCI.

Table II shows the mean errors (in %) associated with
different group sizes obtained using the majority rule as well
as the confidence-based rules in Equations (1)–(3) based on
either using 24 PCA components or using two CSPs.

As we found in [28], also for a visual search task a
reasons why a confidence-based rules perform better than
the simple majority rule is because they remove ties in even-
sized groups. Indeed, as we can see both in Table II and
Figure 3, the difference in performance for such groups is
usually much greater than for odd-sized groups. However,
both our cBCIs, but particularly the CSP-based one, manage
to statistically significantly augment human decision-making
also with odd-sized groups.

IV. CONCLUSIONS

In this paper we have presented a collaborative brain-
computer interface that estimates and integrates the deci-
sion confidence of multiple non-communicating observers
to achieve better group decisions. In previous research [28]
we had tested this approach with a simple visual matching
task and found that cBCIs can significantly outperform group
decisions made by a traditional majority vote. Here, based
on this experience, we have redesigned our system to further
improve its performance and have put it to the test by
applying it to a more difficult visual search task involving
detecting a target in a set of 40 random distractors where
targets could only be recognised by a conjunction of two
features (colour and orientation), and so there was no pop-
out effect.

A key improvement in the system was the adoption
of spatio-temporal CSP filters which replaced the spatio-
temporal PCA we previously used to extract features from



TABLE I: Statistical comparison of methods for group decisions for different group sizes. The table reports the p-values
and corresponding W statistics (in brackets) returned by the one-tailed Wilcoxon signed-rank test when comparing the
performance of groups of different sizes adopting different decision methods (i.e., Majority, confidence-based with PCA
and confidence-based with CSP). The number of groups of each size that could be assembled with our 10 participants is
indicated in the last row of the table. p-values below the statistical significance level 0.01 are in bold face, while p-values
below 0.05 are in italics. The “Wins” column reports the number of group sizes where p-values are below 0.05.

Group size

Comparison 2 3 4 5 6 7 8 9 Wins

Majority wins
over PCA

1.000000
(1035.00)

1.000000
(3267.00)

1.000000
(21690.00)

1.000000
(21513.00)

1.000000
(21390.00)

1.000000
(4458.00)

1.000000
(1000.00)

0.943359
(34.50)

0

Majority wins
over CSP

1.000000
(990.00)

1.000000
(2425.50)

1.000000
(22155.00)

1.000000
(21802.00)

1.000000
(22150.00)

1.000000
(5022.00)

1.000000
(990.00)

0.994141
(49.00)

0

PCA wins over
Majority

0.000000
(0.00)

0.000000
(649.00)

0.000000
(46.00)

0.000000
(1492.00)

0.000000
(138.00)

0.000000
(693.00)

0.000000
(35.00)

0.103516
(10.50)

7

PCA wins over
CSP

0.993952
(648.50)

0.498915
(2184.50)

0.999792
(10582.00)

0.501097
(10152.50)

0.999830
(10500.00)

0.999114
(3412.00)

0.973101
(501.50)

0.906250
(25.50)

0

CSP wins over
Majority

0.000000
(0.00)

0.000000
(130.50)

0.000000
(0.00)

0.000000
(776.00)

0.000000
(5.00)

0.000000
(231.00)

0.000000
(0.00)

0.015625
(6.00)

8

CSP wins over
PCA

0.006164
(254.50)

0.501823
(2186.50)

0.000208
(5708.00)

0.499143
(10148.50)

0.000170
(5610.00)

0.000892
(1638.00)

0.027318
(239.50)

0.171875
(10.50)

5

Sample size 45 120 210 252 210 120 45 10

the neural signals. This had important consequences. Firstly,
we were able to obtain more accurate results with only
two CSPs (as opposed to the 24 PCAs used previously)
thereby significantly reducing the number of features and
free parameters used in the system. Indeed, results obtained
with 10 participants indicated that for almost all group sizes
our CSP-based collaborative BCI yields group decisions
that are statistically significantly better than both traditional
(majority-based) group decisions and group decisions made
by a PCA-based collaborative BCI. Secondly, CSP filtering
is much faster than PCA and this allowed us to extend our
ERP representation to include stimulus-locked potentials, in
addition to the response-locked representation used before,
thereby further marginally improving performance, while at
the same time shortening the training process to a fraction
of the original (a few seconds as opposed to a few minutes).

In this work we used the original CSP filter. However, in
recent years several extensions of CSP have been proposed
which further improve its performance (i.e., [36], [37]). In
future research we will test some of these extensions in our
cBCIs to evaluate their advantages and drawbacks.

Furthermore, we will also investigate whether other phys-
iological measures such as heart rate, breathing frequency,
skin conductance and eye movements can complement our
current feature-set and lead to even more accurate confidence
estimators.

We also plan to verify our offline findings with an online
experiment, where 2–3 participants will simultaneously make
decisions on identical or closely related tasks.
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