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Abstract— Detecting a target in a complex environment can
be a difficult task, both for a single individual and a group,
especially if the scene is very rich of structure and there are
strict time constraints. In recent research, we have demon-
strated that collaborative Brain-Computer Interfaces (cBCIs)
can use neural signals and response times to estimate the
decision confidence of participants and use this to improve
group decisions. We successfully tested this approach with
visual-matching and visual-search tasks with artificial stimuli
(e.g., squares, rectangles, etc.).

This paper extends that work in two ways. Firstly, we
use a much harder target detection task where observers
are presented with complex natural scenes where targets are
very difficult to identify. Secondly, we complement the neural
and behavioural information used in our previous cBCIs with
physiological features representing eye movements and eye blinks
of participants in the period preceding their decisions. Results
obtained with 10 participants indicate that the proposed cBCI
improves decision errors by up to 3.4% (depending on group
size) over group decisions made by a majority vote. Further-
more, results show that providing the system with information
about eye movements and blinks further significantly improves
performance over our best previously reported method. This
suggests that cBCIs may soon be ready for deployment in real-
world decision tasks.

I. INTRODUCTION AND BACKGROUND
The human visual system is far superior to any computer

system in the interpretation of visual scenes in ordinary
conditions. However, in the presence of complex scenes, in
the absence of sufficient time to complete the visual parsing,
or when attention is divided, the human visual system is far
from perfect [1], [2], [3], [4]. In these conditions, observers
can only typically attend a subset of the features of the scene,
thus affecting their ability to accurately assess situations,
which may result in suboptimal decisions.

These perceptual and cognitive limitations can partly be
overcome if multiple individuals are involved in the assess-
ment and decision process. This is no surprise, of course,
as much research on decision making has shown that group
decisions can be superior to individual decisions [5], [6], [7],
[8], [9]. However, it is also well known that the effectiveness
of group decisions is hindered by difficulties in coordination
and interaction between group members, reduced member
effort within a group, strong leadership, group judgement
biases, and so on [6], [9], [8]. In fact, in certain circumstances
groups could be worse than individuals [10], [11], e.g., when
there are strong time constraints on a decision.
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The situation is similar for the hugely researched area
of computer-assisted decision-support systems [12], which
can either help or hinder decision-making and situation
awareness [13], [14], [15], [16].

In this paper we will propose a hybrid approach where
group decisions are aided by a particular form of decision-
support system based on a hybrid Brain-Computer Interface
(BCI) which attempts to establish the confidence of the
decision makers and exploit this to improve group decisions.

Usually BCIs provide an alternative communication chan-
nel for individual users with severe motor disabilities. How-
ever, in recent years collaborative BCIs (cBCIs) have started
to be applied with good success to perform group action,
group perception and also group decision-making for able
bodied individuals [17], [18], [19], [20], [21], [22], [23], [24],
[25]. In cBCIs, either the EEG signals or individual classifier
outputs are integrated to determine the system’s output.

For instance, for a movement-planning task, the cBCI
proposed in [17] could make motor decisions much faster
than a non-BCI user, but with a much lower level of accuracy.
In [18] a cBCI could discriminate between pictures of cars
and faces much faster than a non-BCI user, but a group
using the cBCI could not compete with a group of non-
BCI users in terms of decision accuracy. Similarly, in a task
involving the detection of aeroplanes in aerial images of
urban environments, the cBCI in [23] was much faster than
non-BCI users, but could not reach equivalent accuracy.

Particularly relevant for this paper is some recent re-
search [24] where we developed a cBCI for improving group
decisions in a visual-matching task. We used neural features
extracted from EEG and response times to predict the con-
fidence of each participant in a decision. Then, we weighed
the decisions of group members according to their confidence
before combining them to produce a group decision. With
our cBCI, for the first time, cBCI-assisted groups were more
accurate than identically-sized groups performing the same
task. However, the visual matching task performed by the
users was based on artificial stimuli (triangle, squares, etc.).

In [26] we tested this cBCI on a traditional visual-search
task (finding a red vertical bar among a large number of
green vertical and horizontal bars and red horizontal bars).
Also, we further improved its performance by using a spatio-
temporal Common Spatial Pattern (CSP) filter [27] to extract
neural features from EEG instead of the Principal Component
Analysis (PCA) used in [24]. While results were even more
encouraging, that work also used artificial stimuli.

This paper extends our previous work in two ways. Firstly,
in an attempt to start moving our cBCIs towards real-world



application domains involving more useful target-detection
tasks, e.g., in policing or defence, we used a much harder
search task where observers are presented with complex natu-
ral scenes and targets are very difficult to identify. Secondly,
we complemented the neural and behavioural information
used in our previous cBCIs to assess individual decision
confidence, with physiological features representing the eye
movements and eye blinks of participants during stimulus
presentation and in the proximity of their decisions.

We introduced this second element as in our previous
experiments we noticed that some participants tended to
blink after the stimulus associated with a decision task had
disappeared (as is reasonable), but somehow in synchrony
with their decision. Also, we expected eye movements to be
triggered by the presentation of stimuli as the analysis of a
stimulus was initiated (but could not be completed, due to
the rapidity of stimulus presentation). In the present study,
we wanted to test whether eye movements and blinks would
carry information about decision confidence.

The paper is organised as follows. Section II describes the
participants, the stimuli presented, the data acquisition and
manipulation and how group decisions are obtained in our
cBCI. Results of experiments are presented and analysed in
Section III. Finally, Section IV ends the paper with some
conclusions and suggestions for further research.

II. METHODS

A. Participants

We gathered data from 10 participants (aged 28.5 ± 6.0,
4 females) with normal or corrected-to-normal vision who
gave written informed consent. The research is funded by
the UK’s MoD through DSTL. The project received MoD
and University of Essex ethical approval in July 2014.

B. Stimuli and Tasks

Participants were presented with 8 blocks of 40 trials, for
a total of 320 trials. As shown in Figure 1, each trial started
with the presentation of a fixation cross in the middle of
the screen for 1000ms. This time allowed participants to
get ready for the presentation of the stimuli and got EEG
signals back to baseline after the response from previous
trials. Then an image of an arctic environment, containing
a variable number of penguins (non-targets) and possibly a
polar bear (target), was presented. Each image was displayed
in full screen mode and subtended approximately 30.29
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Fig. 1: Sequence of stimuli presented in a trial.

degrees horizontally and 19.22 degrees vertically. Images
containing a target were randomly built using five different
environments (backgrounds), two different bear pictures and
four possible positions of the target in the picture. This gave
us 40 different target displays and 5 non-target displays. The
stimulus was presented for 250ms and was immediately fol-
lowed by a mask for 250ms so as to increase task difficulty.
The mask was a black and white 24×14 checkerboard. After
the mask, participants had to decide, as quickly as possible,
whether or not a target was present in the image, by clicking
(with the right hand) the left or the right mouse buttons,
respectively. Response times (RTs) were recorded.

The sequence of displays used in the experiment was
randomly generated, stored, and reused with all participants.
This allowed simulating (offline) concurrent group decision-
making. Target images were used in 25% of the trials.

Participants were briefed and prepared for the experiment.
Then they were familiarised with the task by doing 2 training
sessions of 10 trials each. Preparation and practice took ap-
proximately 45 minutes. During the experiment participants
were comfortably seated at about 80 cm from a LCD screen.

C. Data Acquisition and Feature Extraction

1) Neural features: We recorded neural signals from 64
electrode sites using a BioSemi ActiveTwo EEG system.
Each channel was referenced to the mean of the electrodes
placed on each earlobe. The recorded data were sampled at
2048 Hz, band-pass filtered between 0.15 and 40 Hz and
then low-pass filtered with a filter designed with the Remez
exchange algorithm [28] with a pass band of 0–6Hz and a
stop band of 8–1024 Hz. Artifacts caused by eye-blinks and
other ocular movements were removed by using a standard
subtraction algorithm based on correlations. The data were
finally down-sampled to a sampling rate of 16 Hz.

The EEG data were segmented into epochs using both a
response-locked and a stimulus-locked approach. Response-
locked epochs lasted 1500ms and started 500ms before the
user’s response. Stimulus-locked epochs lasted 1500ms and
started in synchrony with the presentation of the stimulus.
Each ERP was thus represented by 48 samples from each of
the 64 available channels, i.e., a total of 3,072 values.

We used a spatio-temporal CSP filter to extract neural
features from ERPs, as this was found to have better perfor-
mance than PCA in [26]. We applied CSP on a participant-
by-participant basis to transform the training set data into
spatial patterns that maximise the variance between classes
(correct/incorrect). We then used the first and the last spatial
patterns as neural features.

2) Response times: We used RTs input features in our
cBCI as they tend to vary in an inversely proportional matter
with the degree of confidence [29]. We recorded RTs by
computing the time difference between the end of the mask
and the click of an ordinary USB mouse. As indicated
in [24], this adds negligible jitter to the RTs.

3) Eye movements and blinks: Eye movements were
recorded by using a Jazz eye tracker which provided data
at a sampling rate of 2 kHz. The following features were



extracted from the recordings of the vertical component of
the eye movements:1 (1) total distance covered by the eyes
along the vertical axis during stimulus presentation (250ms),
(2) standard deviation of the vertical eye movements during
stimulus and mask presentation (500ms), (3) mean of the
numerical derivative of the vertical eye movements in the
same time window, and (4) mean of the derivative signal in
a 500ms time window centred on the response.

D. Making group decisions

Our cBCI uses the features listed above to estimate the
confidence of participants in their decisions and uses this to
weigh such decisions when making a group decision.

In order to train a classifier to predict the confidence of
a decision, ground-truth information on the confidence is
needed. However, this information is not available. In our
previous research [24] we made the assumption that a correct
response given by a participant in a trial is most likely the
result of a confident decision, while an incorrect response
is likely to be an indication of an uncertain decision. Since
the results we obtained based on this assumption were good,
in the current study we followed the same approach. As in
previous work, we used Least Angle Regression (LARS) [30]
to predict the confidence in a decision of each participant.

Once a confidence estimate ci for each of n participants
is available, group decisions were made as follows:

dgroup = sign(w1 · d1 + · · ·+ wn · dn) (1)

where di is the decision of member i of the group and wi =
exp(−2.5− ci) is the corresponding weight.

The data available were processed using 10-fold cross-
validation. This used 10 training sets to compute the optimal
coefficients for LARS and the corresponding independent
test sets to evaluate the performance of the system.

III. RESULTS

Performance across individual participants was quite var-
ied. Error rates ranged from 8.75% to 42.5%, the average
error rate being 18.47% with a standard deviation of 9.36%,
confirming the difficulty of the task for a single individual.

We considered all groups of size n that could be assembled
with our 10 participants, for n = 2, . . . , 10. For each
group, we computed the errors made by the group using the
following methods: (1) the ordinary majority rule, (2) a cBCI
exploiting only neural and behavioural features (EEG+RT)
as in our previous research [24], [26], (3) a cBCI based
on neural and eye blink/movement features (EEG+Eye), and
(4) a cBCI using neural, behavioural and physiological eye
blink/movement features (EEG+RT+Eye).

Table I shows the mean error rate (%) for groups of
increasing size when making decisions with the aforemen-
tioned methods (the best result of each row is shown in bold
face, the worst in italics). This suggests that even with a
realistic search task and natural images our cBCIs always

1We used the vertical eye-movement component as this is also influenced
by eye blinks and also because in preliminary tests we found that the
horizontal component did not seem to contribute any additional information.

TABLE I: Mean errors (in %) for different group sizes using
traditional and cBCI group decision-making systems.

Group
size

Majority EEG+Eye
cBCI

EEG+RT
cBCI

EEG+RT+Eye
cBCI

1 18.47 18.47 18.47 18.47
2 18.47 15.23 15.24 15.04
3 12.04 12.11 12.02 11.99
4 12.04 10.56 10.53 10.44
5 9.98 9.90 9.82 9.75
6 9.98 8.95 8.91 8.79
7 8.91 8.69 8.74 8.64
8 8.91 8.11 8.16 8.01
9 8.12 7.69 8.03 7.78
10 8.12 7.19 7.50 7.19

perform better than the majority rule. Moreover, it suggests
that the integration of neural, behavioural and physiological
(eye blinks/movements) features can further improve the
performance of the system.

These findings are confirmed by the statistical analysis
shown in Table II where we used the one-tailed Wilcoxon
signed-rank test to compare the error distributions within
each group size for different group-decision systems. The
table reports the p-values and W statistics (in brackets) for
each comparison. The last row gives the number of groups of
each size that one can build with 10 participants. The “Wins”
column reports the number of group sizes where p-values
were below the 0.05 statistical significance level. p-values
below 0.05 are in italics, those below 0.01 are in bold face.

The results show that with the realistic search task used
in this study, our new EEG+RT+Eye cBCI is statistically
significantly better than equally sized groups using straight
majority for most group sizes. Also, it is statistically superior
to our previously proposed best cBCI [24], [26] for group
of sizes 4–8. Furthermore, it is never statistically inferior to
any of the methods under test.

IV. CONCLUSIONS

We have proposed a hybrid cBCI for improving group
decisions in an extremely difficult, realistic visual-search task
where participants were given a 250ms glimpse of an arctic
landscape crowded with hundreds of penguins and had to
decide whether a polar bear was hiding among them.

Results show that in the conditions of extreme perceptual
load of our experiment, tapping in to the unconscious mind
of individuals with our neural, behavioural and physiologic
features to evaluate their decision confidence brings consid-
erable benefits. Not only is the proposed cBCI much more
accurate than a single non-BCI user (unsurprisingly), but it
also reduces decision errors by up to 3.4% (depending on
group size) over decisions made by equally-sized groups
of non BCI-users. Also, results show that providing the
system with information on eye movements and eye blinks
further improves performance over our best previous cBCIs
for group decision-making [24], [26]. This is noteworthy as
in those cBCIs we used easier tasks and artificial stimuli.

This suggests that cBCIs may soon be ready for deploy-
ment in real-world visual search tasks, e.g., for suspect/threat
detection in policing or defence.



TABLE II: Statistical comparison of methods for group decisions for different group sizes.

Group size
Comparison 2 3 4 5 6 7 8 9 Wins
EEG+Eye cBCI vs
Majority

0.000002
(114.00)

0.988531
(1131.50)

0.000000
(749.50)

0.001012
(4639.00)

0.000000
(511.00)

0.000000
(776.50)

0.000000
(5.50)

0.015625
(0.00)

7

EEG+RT cBCI vs
EEG+Eye cBCI

0.552544
(440.50)

0.015148
(705.50)

0.252085
(7010.00)

0.006180
(4560.50)

0.050969
(4495.50)

0.961593
(1295.00)

0.848450
(246.00)

1.000000
(21.00)

2

EEG+RT cBCI vs
Majority

0.000001
(130.00)

0.476353
(630.50)

0.000000
(821.50)

0.000000
(3049.50)

0.000000
(459.00)

0.000197
(992.50)

0.000000
(15.00)

0.265625
(6.00)

6

EEG+RT+Eye cBCI
vs EEG+Eye cBCI

0.147186
(298.00)

0.000030
(213.00)

0.002006
(4928.00)

0.000000
(2709.50)

0.000000
(2157.50)

0.053534
(783.00)

0.013289
(94.50)

0.781250
(18.50)

5

EEG+RT+Eye cBCI
vs Majority

0.000000
(102.50)

0.146402
(575.50)

0.000000
(360.00)

0.000000
(2478.00)

0.000000
(264.50)

0.000000
(769.00)

0.000000
(10.00)

0.031250
(2.00)

7

EEG+RT+Eye cBCI
vs EEG+RT cBCI

0.083047
(341.00)

0.200529
(405.00)

0.005421
(4534.00)

0.001286
(3220.00)

0.000006
(2887.00)

0.000256
(470.50)

0.003562
(110.00)

0.062500
(0.00)

5

Sample size 45 120 210 252 210 120 45 10

In the future we will test our cBCI online, where group
members perform a task simultaneously, and we will eval-
uate whether providing the system with other physiological
measurements, such as heart rate, breathing frequency or skin
conductance, can further improve performance.
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