A COLLABORATIVE BRAIN-COMPUTER INTERFACE FOR IMPROVING GROUP DETECTION OF VISUAL TARGETS IN COMPLEX NATURAL ENVIRONMENTS

Davide Valeriani, Riccardo Poli, Caterina Cinel

Brain Computer Interfaces Lab – School of Computer Science and Electronic Engineering – University of Essex (UK)

1. Introduction

- Collaborative Brain-Computer Interfaces (cBCIs) are BCIs concurrently controlled by more than one user.
- We have shown that, in difficult target detection tasks, cBCIs can:
 - estimate the decision confidence of participants, and
 - improve group decisions in tasks

with **simple standard stimuli** (see [1] and [2]).

2. Task

Can you see a bear in 250 ms?

- **Big question:** What happens with more complex stimuli?
- Also, could eye movements help improve our estimates of confidence?

• Left/right click for target/non-target

3. cBCI Architecture

4. Features

Integration of three different features to estimate the confidence:

- Neural features, extracted applying the spatial CSP filter on the EEG signals recorded from 64 electrodes
- *Response times,* as they are inversely proportional with the degree of confidence
- Eye-movement features, extracted from the vertical component of the eye movements recorded with an eye tracker

Least Angle Regression (LARS) was used to predict the confidence via a 10-fold cross-validation loop.

5. Methods

We used four different methods to combine the individual responses and build the group decision:

- M1 ordinary majority rule.
- M2 a cBCI exploiting only neural features and response times.

M3 – a cBCI based on neural and eye-movement features.

M4 – a cBCI using neural and eye-movement features and response times.

6. Results

Mean errors (across all possible groups, in %) for different group sizes using the four methods are shown below:

7. Conclusions

- Results show that our best cBCI is statistically significantly better than equally-sized groups using straight majority.
- Even with more complex stimuli and extremely difficult tasks, our cBCI is more accurate than a single non-BCI user and equally-sized groups of non-BCI users.
- Adding the information about eye movements to the cBCI system further improves the performance.

Contacts

{dvaler, rpoli, ccinel}@essex.ac.uk http://essexbcis.uk

• cBCI may soon be ready for deployment in visual search activities, e.g., for suspect detection in policing or defence.

Acknowledgements

The research is funded by the UK's MoD through DSTL. The project received MoD and University of Essex ethical approval in July 2014.

References

- [1] R. Poli, D. Valeriani, and C. Cinel, "Collaborative Brain-Computer Interface for Aiding Decision-Making," PLoS ONE, vol. 9, no. 7, Jul. 2014. [Online]. Available: http://dx.plos.org/10.1371/journal.pone.0102693
- [2] D. Valeriani, R. Poli, and C. Cinel, "A Collaborative Brain-Computer Interface to Improve Human Performance in a Visual Search Task," in 7th International IEEE EMBS Neural Engineering Conference, 2015.