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1. Introduction 2. Task

e Collaborative Brain-Computer Interfaces (cBCls) are BCIs concur- Can you see a bear in 250 ms?
rently controlled by more than one user.

e We have shown that, in difficult target detection tasks, cBCls can: A

— estimate the decision confidence of participants, and

— improve group decisions in tasks

with simple standard stimuli (see [1] and [2]).
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e Big question: What happens with more complex stimuli? » Protocol

e Also, could eye movements help improve our estimates of confi-
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; ; e 10 volunteers (aged 28.5 £ 6.0, 4 females)
SARSS e 8 blocks of 40 trials (25% targets)
o Left/right click for target/non-target

3. cBCI Architecture
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4. Features 5. Methods

Integration of three different features to estimate the confidence: We used four different methods to combine the individual responses and

o Neural features, extracted applying the spatial CSP filter on the EEG build the group decision:

signals recorded from 64 electrodes M1 - ordinary majority rule.
e Response times, as they are inversely proportional with the degree of
confidence

o Lye-movement features, extracted from the vertical component of the | | M3 —a cBCI based on neural and eye-movement features.
eye movements recorded with an eye tracker

M2 — a cBCI exploiting only neural features and response times.

M4 — a cBCI using neural and eye-movement features and response
Least Angle Regression (LARS) was used to predict the confidence via a times.
10-fold cross-validation loop.

6. Results 7. Conclusions

Mean errors (across all possible groups, in %) for different group sizes e Results show that our best cBCI is statistically significantly better
using the four methods are shown below: than equally-sized groups using straight majority.

e Even with more complex stimuli and extremely difficult tasks, our
cBClI is more accurate than a single non-BCI user and equally-sized
groups of non-BClI users.

e Adding the information about eye movements to the cBCI system
further improves the performance.

e cBCI may soon be ready for deployment in visual search activities,
e.g., for suspect detection in policing or defence.
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