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Isolated dystonia is a neurological disorder of heterogeneous
pathophysiology, which causes involuntary muscle contractions
leading to abnormal movements and postures. Its diagnosis is
remarkably challenging due to the absence of a biomarker or gold
standard diagnostic test. This leads to a low agreement between
clinicians, with up to 50% of cases being misdiagnosed and
diagnostic delays extending up to 10.1 y. We developed a deep
learning algorithmic platform, DystoniaNet, to automatically iden-
tify and validate a microstructural neural network biomarker for
dystonia diagnosis from raw structural brain MRIs of 612 subjects,
including 392 patients with three different forms of isolated focal
dystonia and 220 healthy controls. DystoniaNet identified clusters
in corpus callosum, anterior and posterior thalamic radiations,
inferior fronto-occipital fasciculus, and inferior temporal and supe-
rior orbital gyri as the biomarker components. These regions are
known to contribute to abnormal interhemispheric information
transfer, heteromodal sensorimotor processing, and executive
control of motor commands in dystonia pathophysiology. The
DystoniaNet-based biomarker showed an overall accuracy of
98.8% in diagnosing dystonia, with a referral of 3.5% of cases
due to diagnostic uncertainty. The diagnostic decision by Dysto-
niaNet was computed in 0.36 s per subject. DystoniaNet signifi-
cantly outperformed shallow machine-learning algorithms in
benchmark comparisons, showing nearly a 20% increase in its di-
agnostic performance. Importantly, the microstructural neural net-
work biomarker and its DystoniaNet platform showed substantial
improvement over the current 34% agreement on dystonia diag-
nosis between clinicians. The translational potential of this bio-
marker is in its highly accurate, interpretable, and generalizable
performance for enhanced clinical decision-making.
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Isolated dystonia is a rare neurological disorder of unknown
pathophysiology, which causes involuntary muscle contractions
leading to abnormal, typically patterned, twisting movements
and postures. Symptoms of dystonia have a pervasive negative
impact on patient’s daily activities and quality of life, often
leading to continuous stress, psychiatric comorbidities, social
embarrassment, and occupational disability (1).

As the third most common movement disorder after essential
tremor and Parkinson’s disease, isolated dystonia is estimated to
affect up to 35.1 per 100,000 general population (2). Its exact
incidence, however, is unknown because up to 50% of dystonia
cases go misdiagnosed or underdiagnosed at their first encounter
(3) and the average diagnostic delay extends up to 10.1 y,
depending on the form of dystonia (4-10).

This significant diagnostic challenge is primarily associated
with the absence of a biomarker for isolated dystonia, a defined and
objective characteristic that is measured as an indicator of the
common pathophysiological process for its accurate diagnosis (11).
In the absence of a biomarker, there is no gold standard diagnostic
test for dystonia, and current diagnostic recommendations remain
formulated purely on clinical syndrome characteristics (12-15).
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Diagnosis is typically impacted by a number of factors, including
phenotypical variability of the disorder, the circumstances of eval-
uation, the experience and expertise of the clinician, the psycho-
logical status of the patient, and nonneurological conditions that
mimic dystonic symptoms (15, 16). Moreover, the predicted impact
of current diagnostic recommendations in terms of their reliability,
sensitivity, and specificity has not been established, while the val-
idity of clinical diagnosis of dystonia without a biomarker could not
be assessed. As a stark illustration, several studies repeatedly failed
on the diagnostic consensus of isolated focal dystonia between cli-
nicians, including laryngeal dystonia, cervical dystonia, blepharo-
spasm, oromandibular dystonia, and writer’s cramp, with nil to a
weak agreement at Cohen’s k = 0.05 to 0.52 between the partici-
pating providers (14, 16, 17). Thus, the current diagnostic approach
is open to bias, and a diagnostic consensus between clinicians is
hard to achieve. Besides the disorder’s negative impact on the pa-
tient’s quality of life, the current suboptimal clinical care of dystonia
in terms of its accurate and efficient diagnosis amounts to the
continuous growth of healthcare costs from repeated office visits,
redundant assessments, and professional disability (4-10). Impor-
tantly, delayed diagnosis results in deferred treatment.

Much of the challenges associated with the development of a di-
agnostic biomarker for isolated dystonia have been historically related
to its unclear pathophysiology. Recent advances in brain imaging
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methodologies and analytical techniques have allowed the identifi-
cation of widespread alterations of brain structure and function in this
disorder, involving not only the basal ganglia and cerebellum but also
higher-order motor and associative cortical regions (18). Different
forms of dystonia have been characterized by similarities in large-
scale disorganization of gray and white matter architecture, includ-
ing abnormal distribution of influential regions of information
transfer (hubs) in prefrontal, parietal, occipital cortices and thalamus
and reduced connectivity of the sensorimotor and frontoparietal re-
gions (19-23). This knowledge critically shifted our understanding of
dystonia pathophysiology from a basal ganglia disorder to a large-
scale neural network disorder and thrust the field toward probing
these alterations as potential candidate markers for its diagnosis and
treatment (24-28).

Building on the current knowledge of dystonia pathophysiol-
ogy, we considered its whole-brain large-scale abnormalities for
the development of a robust microstructural neural network
biomarker of significant diagnostic potential. To reduce bias in
the selection of neural network alterations as components of a
candidate biomarker for dystonia diagnosis, we developed a deep
learning platform based on the architecture of a 3D convolutional

neural network, DystoniaNet (Fig. 1 4 and B), which used a fully
data-driven approach to automatically discover informative diag-
nostic features from raw structural brain images in a large dataset of
612 subjects. We assessed the performance and diagnostic potential
of DystoniaNet in benchmark comparisons with three different
shallow machine-learning pipelines, which used an alternative meta-
analytical biomarker as an informative feature (Fig. 1C). We hy-
pothesized that large-scale microstructural neural network alter-
ations may be implemented, together with their algorithmic
platform, DystoniaNet, as a biomarker for objective, accurate, fast,
and cost-efficient diagnosis of isolated focal dystonia. We postulated
that this diagnostic biomarker can be measured with sufficient
precision and reliability across different forms of isolated dystonia
to enhance its translation potential.

Results

Based on a fully automated data-driven approach and without a
priori knowledge, DystoniaNet identified a microstructural
neural network biomarker for dystonia diagnosis using a training
set of 160 patients with laryngeal dystonia and 160 healthy
controls (Table 1). The multilayer components of this biomarker
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Fig. 1. Deep learning and shallow machine-learning pipelines for diagnosis of isolated dystonia. (A) Raw structural brain MRIs were used with the deep

learning pipeline (DystoniaNet). The architecture of DystoniaNet included four convolutional layers (Conv3D) for feature extraction from raw structural MR
images, each followed by the rectified linear unit (ReLU) activation and maximum pooling (MaxPooling3D) layers. The kernel sizes of each Conv3D layer were
6x6x6,3x3X%3,3x3x3,and2 x 2 x 2voxels, respectively. The kernel sizes of each MaxPooling3D layer were 4 x 4 x 4,3x3x3,3x3x3,and2x2x 2,
respectively (given in the brackets). The global maximum pooling layer (GlobalMaxPooling3D) followed the fourth MaxPooling3D layer and was followed by
a fully connected Dense layer of 40 filters. The classifier included dense layer of two filters with Softmax activation, with the probability of dystonia as the
output. (B) Axial brain slices depict 2D visualization of the average 3D feature maps extracted from the corresponding Conv3D layers of DystoniaNet. The
color bar shows the normalized weight of discriminative voxels learned by DystoniaNet based on the training set of 160 patients with laryngeal dystonia and
160 healthy controls. Coordinates are given in the AFNI standard Talairach-Tournoux space. (C) Shallow machine-learning pipelines show the steps for
preprocessing of raw structural MRI (skull removal and alignment to the AFNI standard space), extraction of 12 features from gray matter volume and cortical
thickness based on meta-analysis of neuroimaging literature in laryngeal dystonia, and their input into three machine-learning classifiers: linear discriminant
analysis (LDA), support vector machine (SVM), and artificial neural network (ANN), with the probability of dystonia as the output. PreM, premotor cortex;
SM1, primary sensorimotor cortex; IPC, inferior parietal cortex; Ins, insula; Put, putamen; GP, globus pallidus.
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Table 1. Demographics of participants

Participant groups

Training set

Number of participants
Sex, F/M

Mean age + SD, y

Mean dystonia duration + SD, y

Scanner strength (3.0 T)

First independent test set

Number of participants
Sex, F/M
Mean age + SD, y

Mean dystonia duration + SD, y

160 healthy controls

160 laryngeal dystonia

102/58 102/58
484 + 11.6 49.5 + 10.9
n/a 13.3 £ 10.2
160 160

60 healthy controls

60 laryngeal dystonia

42/18 57/3
62.3 + 13.1 62.6 + 4.8
n/a 16.4 + 12.6

60 60

Scanner strength (3.0 T)
Second independent test set
Number of participants

Sex, F/M 54/5
Mean age + SD, y 67.4 + 8.7
Mean dystonia duration + SD, y 15.2 + 8.6
Scanner strength (3.0 T/1.5 T) 59/0

59 laryngeal dystonia

54 blepharospasm 59 cervical dystonia

41/13 53/6
56.7 + 15.6 52.1 + 16.3
7.1 +42 11.3+78

19/35 27/32

n/a, not applicable.

included the right posterior thalamic radiation of corona radiata
and left inferior fronto-occipital fasciculus extending to uncinate
fasciculus in the first layer of DystoniaNet, the bilateral corpus
callosum extending to the anterior thalamic radiation of corona
radiata in the first and second layers, and the left superior orbital
and inferior temporal gyri in the third layer (Fig. 2 and Table 2).
All of these identified brain regions have been previously
reported to exhibit structural or functional alterations in differ-
ent forms of dystonia (recent review in ref. 18). The patho-
physiological relevance of this biomarker is reflected in its high
generalizability for accurate diagnosis of dystonia across the
phenotypical spectrum of this disorder, as described below.

As shown in Fig. 3, using the first independent test set of 60
patients with laryngeal dystonia and 60 healthy controls, the
DystoniaNet-based biomarker achieved an out-of-sample area
under the curve (AUC) of 92.4% in discriminating patients from
controls, with 95.0% sensitivity and 85.0% specificity (Fig. 3 A-
C). The positive predictive value (PPV) was 86.4%, and the
negative predictive value (NPV) was 94.4%. Following the op-
timization of DystoniaNet with the introduction of the dynamic
range to manage its diagnostic uncertainty, its accuracy of dys-
tonia diagnosis was 96.6%, with the referral of one patient
(1.7%) for further examination (Fig. 3D). The average compu-
tational time of DystoniaNet for delivering the diagnostic deci-
sion was 0.36 s per subject.

The performance of the microstructural neural network bio-
marker using the DystoniaNet pipeline was compared to the
performance of the alternative meta-analytical biomarker using
three different shallow machine-learning algorithms in the same
training and test sets. The components of the meta-analytical
biomarker included the bilateral insula extending to the puta-
men and globus pallidus, premotor and primary sensorimotor
cortices, and left inferior parietal cortex (Fig. 1C and Table 2).
The AUC:s of the shallow pipelines were 82.9% for linear dis-
criminant analysis (LDA), 81.2% for support vector machine
(SVM), and 74.0% for one-layer artificial neural network (ANN;
Fig. 3 A and C). McNemar’s tests showed that the diagnostic
performance of the meta-analytical biomarker was not signifi-
cantly different between the three shallow pipelines based on
their AUCs (LDA vs. SVM P = (0.48; LDA vs. ANN P = (.23;
SVM vs. ANN P = 0.07). The sensitivity and specificity of the
shallow pipelines were 60.0% and 83.3% for LDA, 65.0% and
85.0% for SVM, and 50.0% and 80.0% for ANN, respectively

26400 | www.pnas.org/cgi/doi/10.1073/pnas.2009165117

(Fig. 3B). The PPV and NPV were 78.3% and 67.6% for LDA,
81.2% and 70.8% for SVM, and 71.4% and 61.5% for ANN,
respectively. While the meta-analytical biomarker achieved the
above-the-chance AUCs in discriminating between patients and
healthy controls, its specificity, sensitivity, PPVs, and NPVs were
significantly lower compared to the DystoniaNet-based micro-
structural neural network biomarker (McNemar’s tests: Dysto-
niaNet vs. LDA P = 6.8 x 10™*; DystoniaNet vs. SVM P = 2.1 x
1073; DystoniaNet vs. ANN P = 2.8 x 107% Fig. 3 A-C).

The diagnostic generalizability and broader translational po-
tential of the best-performing microstructural neural network
biomarker and its DystoniaNet platform were further examined
using the second independent test set of 172 patients with three
different forms of isolated focal dystonia. DystoniaNet achieved
overall accuracy of 98.8% with a stable diagnostic power across
all cases (Fig. 3E). Specifically, it showed 98.2% accuracy in
diagnosing laryngeal dystonia, 100% in diagnosing cervical dys-
tonia, and 98.1% in diagnosing blepharospasm, while referring
six patients (3.5%) for further examination.

The performance of the microstructural neural network bio-
marker and its DystoniaNet platform remained stable indepen-
dent of the magnetic field strength (accuracy range: 98.0 to
100%), MRI scanner vendor (accuracy range: 96.9 to 100%),
head coil (accuracy range: 95.2 to 100%), T1-weighted image
acquisition sequence (accuracy range: 98.3 to 100%), or data
collection site (accuracy range: 97.6 to 100%; SI Appendix, Fig.
S1). Its high specificity was confirmed using a supplementary
third independent dataset of 1,480 healthy controls (accuracy,
96.9%; referral rate, 2.6%; SI Appendix, Fig. S2E). Thus, our
data show that the performance characteristics of the micro-
structural neural network biomarker and its advanced Dysto-
niaNet platform are acceptable in terms of sensitivity, accuracy,
specificity, and precision for diagnosis of isolated dystonia.

Discussion

At present, there is no biomarker or gold standard diagnostic test
for dystonia, and there are no current technologies or ap-
proaches that address this problem (4-10). This presents a sig-
nificant clinical challenge with a negative impact on patient’s
quality of life and healthcare costs. We demonstrate that our
automatically defined microstructural neural network biomarker,
together with its algorithmic platform, DystoniaNet, provides
objective, accurate, fast, and cost-efficient diagnosis of isolated
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Structural neural biomarkers for automatic diagnosis of dystonia
as identified by the DystoniaNet

Conv3D
(6x6x6)

Conv3D
(6x6x6)

SOG  x=10 2l

Fig. 2. Microstructural neural network biomarker for automatic diagnosis of isolated dystonia as identified by the DystoniaNet platform. Brain regions as
components of the biomarker are identified by the first three convolutional layers of DystoniaNet for diagnostic classification. Brain regions in the fourth
layer are not visualized due to low spatial resolution. Axial and sagittal brain slices depict 2D visualizations of the most discriminative features in the AFNI
standard Talairach-Tournoux space. ReLU, rectified linear unit; CC/ATR, corpus callosum/anterior thalamic radiation of corona radiata; PTR, posterior thalamic
radiation of corona radiata; IFOF, inferior fronto-occipital fasciculus; SOG, superior orbital gyrus; ITG, inferior temporal gyrus.

focal dystonia. Its translational value is in the streamlined, ro-
bust, explainable, and generalizable performance for delivering
the diagnosis of dystonia compared to the current standard of
care, which is based purely on the variable symptomatology of
this disorder (14, 16). In particular, the overall 98.8% diagnostic
accuracy of the microstructural neural network biomarker
identified by DystoniaNet substantially exceeds the recently
reported 34% diagnostic agreement rate between clinicians with
different expertise based on extensive diagnostic workup and
syndromic approach (14). The accuracy of the DystoniaNet-
based biomarker is further enhanced by the built-in safeguards
that are able to successfully identify uncertain cases and refer
them for further evaluation, rather than provide a decision that
may be prone to diagnostic errors. Furthermore, DystoniaNet
shows an unprecedented speed in accurately diagnosing dystonia
from individual raw structural brain MRI compared to the
existing diagnostic delays of up to 10.1 y that require, on average,
3.95 office visits (4-10).

The performance and generalizability of DystoniaNet in de-
livering a highly accurate diagnosis across different forms of
dystonia without any additional requirements for dystonia form-
specific model retraining is based on its capability to identify the
common features of disorder pathophysiology (18). Specifically,

Valeriani and Simonyan

the biomarker components that were automatically learned by
DystoniaNet as most informative for discriminating the disorder
have been previously demonstrated to be aberrant in patients
with dystonia. While gray matter changes appear to be more
relevant to dystonia form-specific aberrations (29-32), white
matter alterations across different forms of dystonia emerge as a
more common feature of this disorder. Structural abnormalities
in the corpus callosum were previously reported within the dys-
tonia spectrum, including laryngeal dystonia, cervical dystonia,
and blepharospasm, as well as focal hand dystonia, musician’s
dystonia, X-linked dystonia-parkinsonism, and poststroke lingual
dystonia (e.g., refs. 19, 20, 29, and 33-45). These alterations were
related to the broader spread of cortical changes in dystonia and
attributed to aberrant interhemispheric information transfer.
Similarly, several studies reported abnormalities in the corona
radiata, specifically involving its anterior and posterior thalamic
radiations, pointing to altered structure and function of the
thalamus within the aberrant basal ganglia-thalamo-cortical cir-
cuitry and its projecting targets in prefrontal and parietal cortical
regions. The latter has also been shown to have abnormal
functional activity and connectivity in patients with various forms
of dystonia (19, 20, 39-42, 46). Other regions that were identified
by DystoniaNet as informative features included inferior temporal
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Table 2. Informative features of deep and shallow machine learning pipelines

Cluster size
Brain region Center of cluster mass x, y, z voxels
Components of the microstructural neural network biomarker identified by DystoniaNet
Layer 1
L corpus callosum extending to anterior thalamic radiation -19, 37, 10 5091
R corpus callosum extending to anterior thalamic radiation 25,34, 6 4214
R posterior thalamic radiation 17, =54, 41 545
L inferior fronto-occipital fasciculus extending to uncinate -38, -5, -18 262
fasciculus
Layer 2
L corpus callosum extending to anterior thalamic radiation -18, 32, 10 7000
R corpus callosum extending to anterior thalamic radiation 24,31, 5 5837
R posterior thalamic radiation underlying superior parietal lobule 18, -52, 36 689
Layer 3
L superior orbital gyrus -10, 35, —10 9669
L inferior temporal gyrus -41, -10, -26 1474
Components of the meta-analytical biomarker identified from dystonia neuroimaging literature
L insula/putamen/globus pallidus =29, -8, -1 322
R insula/putamen/globus pallidus 34,7, 1 245
L inferior parietal cortex (area PF) -50, -42, 26 301
L premotor/primary sensorimotor cortex (areas 6, 4, 3, 1) -48, —-13, 34/ -37, -20, 51 266/221
R premotor/primary sensorimotor cortex (areas 6, 4, 3, 1) 48, -12, 34 273

L, left; R, right.

and superior orbital gyri as well as the white matter pathways and
the inferior fronto-occipital and uncinate fasciculi, connecting
these cortical regions with the frontal, temporal, and occipital
lobes (47). Alterations in these regions are thought to contribute
to abnormal heteromodal sensorimotor processing and executive
control of goal-oriented motor behaviors in patients with isolated
dystonia (32, 33, 43-45). Taken together, pathophysiologically
relevant alterations of white matter commissural, association,
and projection fibers, as automatically detected by DystoniaNet,
capture and reflect wider spread abnormalities in their target
gray matter regions and likely represent a unifying neural bio-
marker of isolated dystonia.

Methodologically, the biomarker identification was possible
due to the development, optimization, and validation of its ad-
vanced algorithmic platform, DystoniaNet. As the robustness of
performance of deep learning algorithms depends on the avail-
ability of big data, it is not trivial to assemble such datasets for
rare disorders like dystonia. The development of DystoniaNet
was possible because of the continuous efforts to understand the
neural pathophysiology of this disorder and the timely avail-
ability of the large (n = 392) research MRI dataset of carefully
phenotyped patients with isolated focal dystonia for training and
subsequent validations of this platform. In this regard, the Dys-
toniaNet platform is unique because its highly accurate diag-
nostic decisions are built on the algorithm’s automatic selection
of the pathophysiologically relevant biomarker from raw struc-
tural brain images, which are routinely acquired in the clinical
setting and require no additional image processing prior to their
input to this algorithm. This attribute is critical for the clinical
applicability of DystoniaNet as a diagnostic test for informing the
physician’s decision-making. Finally, the visualization of the
identified microstructural neural network biomarker and the
interpretability of DystoniaNet’s internal model for automated
diagnostic decision-making offers a transparent and fair machine-
learning platform and makes its translation to healthcare more
compliant (48, 49).

As a comparison, shallow machine-learning algorithms require
initial MR image preprocessing and a priori feature extraction and
selection, all of which are laborious and computationally expensive
procedures (24, 25). Importantly, the internal architecture of shal-
low ML models suffers from low complexity and sensitivity and
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limited classification accuracy, making these models unfeasible as
clinically applicable automatic tools of dystonia diagnosis when
compared to DystoniaNet (detailed in SI Appendix).

In conclusion, we present a microstructural neural network
biomarker, which was discovered by a fully automated deep
learning DystoniaNet algorithm from raw structural MR images
and showed high diagnostic accuracy across different forms of
isolated dystonia, independent of MRI hardware, acquisition
protocol, or data collection site. It by far exceeded the currently
existing clinical diagnostic workflow, both in terms of accuracy
and time to diagnosis. Implementation of such an objective bio-
marker for dystonia diagnosis would be transformative for the
clinical management of this disorder to reduce the rate of mis- and
underdiagnoses and the overall cost associated with the wrong or
delayed diagnosis, while, in parallel, accelerating the timely delivery
of treatment. Future studies are warranted for the diagnostic as-
sessment of DystoniaNet and its biomarker in an even broader
phenotypical spectrum of dystonia, as well as across its genetic
forms. Equally important, future research should focus on the ex-
tensions of DystoniaNet for comprehensive differential diagnosis of
dystonia from other movement disorders and nonneurological
conditions mimicking dystonia.

Materials and Methods

Study Participants. A total of 612 subjects participated in the study, including
392 patients with isolated dystonia and 220 healthy controls (Table 1). Di-
agnosis of isolated focal dystonia (laryngeal dystonia, cervical dystonia, or
blepharospasm) and the absence of other neurological disorders, including
tics, dyskinesia, and other hyperkinetic movement disorders, or psychiatric
and laryngeal problems was confirmed based on a detailed case history,
physical examination, and neurological and laryngeal evaluations, as ap-
propriate (demographics provided in Table 1 and S/ Appendix). Tremor is
known to co-occur in up to 70% of patients with dystonia (50-52), with
dystonic tremor being considered as part of dystonia phenomenology (53).
In line with this, 24.7% of patients in our cohort had concurrent dystonic
tremor and 7.7% of patients had essential tremor. Because the overall co-
occurrence of tremor was lower than generally reported (50-52), it was
unlikely to significantly influence the identification of the dystonia-specific
biomarker. Control subjects were healthy individuals without any past or
present history of neurological, psychiatric, or laryngeal problems. The study
was approved by the institutional review boards of the Icahn School of
Medicine at Mount Sinai and Mass General Brigham Research Program. All
subjects gave written informed consent before study participation.
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Fig. 3. Performance of deep learning and shallow machine-learning pipelines. (A) Receiver operating characteristic (ROC) curves for each pipeline using the
first independent test set of 60 patients with laryngeal dystonia and 60 healthy controls. The area under the ROC curve (AUC) values for each pipeline are
reported in the key. The dotted line represents the performance of a random classifier. (B) The corresponding contingency tables report the number of
healthy controls and patients who are correctly and incorrectly classified by each pipeline. (C) The diagnostic performance of each pipeline in the first in-
dependent test set of 60 patients with laryngeal dystonia and 60 healthy controls. Each symbol represents a subject. Subjects classified as patients are
represented by circles; subjects classified as healthy controls are represented by triangles. Colored symbols represent correct diagnosis; black symbols rep-
resent misclassifications. The y axis represents the probability of dystonia as assessed by each pipeline; the gray line represents the decision boundary. The
corresponding AUC values are given for each pipeline. (D) Optimized DystoniaNet with a dynamic range to maximize diagnostic performance in 60 laryngeal
dystonia patients of the first independent test set. The gray shading represents the area of uncertainty where DystoniaNet refers the subject (gray cross) for
further examination. The y axis represents the probability of dystonia; the gray line represents the decision boundary. The corresponding accuracy and re-
ferral rate are reported. (E) Testing of generalizability of the DystoniaNet-derived biomarker in the second independent test set of 172 patients with different
forms of dystonia, including 59 patients with laryngeal dystonia, 59 patients with cervical dystonia, and 54 patients with blepharospasm. The pipeline shows
the steps from the use of raw structural MRI as input to the final optimized DystoniaNet, which processes data and outputs the final diagnostic decision as
dystonia-yes, dystonia-no, or referral within 0.36 s for each subject. Each symbol represents a subject. Subjects classified as patients are represented by circles;
misclassified subjects are represented by triangles; referrals are represented by crosses. The y axis represents the probability of dystonia; the gray line rep-
resents the decision boundary; the gray shading shows the area of diagnostic uncertainty (referral). The corresponding accuracy and referral rate are
reported. Data are visualized using the Matplotlib library (63).
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Data Acquisition and Definition of Subject Cohorts. \Whole-brain T1-weighted
MRI data were acquired on 3.0-T (n = 545) or 1.5-T (n = 67) scanners (detailed in
SI Appendix, Tables S1 and S2). MRIs were used for the biomarker development
and testing of the deep classification pipeline (DystoniaNet) and the three
shallow machine-learning pipelines, including LDA, SVM, and ANN.

It is critical to train machine-learning algorithms on a well-characterized,
balanced, homogeneous, large dataset in order to achieve their robust
performance. This is especially important for rare diseases, such as dystonia,
that lack an established biomarker. Our cohort of 160 patients with laryn-
geal dystonia and 160 age- and sex-matched healthy controls fit these
characteristics best and was, therefore, chosen as a training set for the
biomarker development and model training (Table 1). The subsequent bio-
marker and model testing and optimization were performed in the first inde-
pendent test set of 60 patients with laryngeal dystonia (i.e., the same diagnosis
as in the training set) and 60 healthy controls. Finally, validation of the bio-
marker performance was conducted in the second independent test set of 172
patients with three different forms of dystonia, including laryngeal dystonia,
cervical dystonia, or blepharospasm, which allowed assessment of the general-
izability of DystoniaNet across the dystonia phenotypic spectrum, various scan-
ning hardware, MRI acquisition sequences, and data collection sites.

The age and sex of subjects in the training set were tightly matched be-
tween the patient and control groups (all P > 0.37 based on D'Agostino—
Pearson normality of data distribution and two-sample independent t tests),
which prevented the machine-learning algorithms from learning the dif-
ferences in these biological variables as false predictors of diagnosis. The
remaining subjects were randomly assigned to the first and second inde-
pendent test sets. As a result of this randomization, testing for the balance
of age and sex in the first and second independent test sets was not per-
formed (54). Nonetheless, because the internal parameters of all machine-
learning algorithms were fixed during their development on the age- and
sex-balanced training set, possible differences in sex or age distribution in
the first and second independent test sets could not have an impact on the
diagnostic performance of machine-learning algorithms. Moreover, ran-
domization of subjects in the first and second independent test sets pre-
sented an opportunity to evaluate the performance and generalizability of
the machine-learning algorithms in clinically realistic patient cohorts, as
clinicians encountering dystonia patients have control over neither their
demographics nor the clinical MRI acquisition parameters.

DystoniaNet Model Development. DystoniaNet was developed to use raw
structural brain MRI without any image preprocessing applied. As shown in
Fig. 1A, the DystoniaNet deep classification pipeline included the Feature
Extraction and Classifier components. For Feature Extraction, we first de-
veloped a shallow neural network architecture with one convolutional layer
(Conv3D) and one dense layer (Dense) of 10 filters each and then increased
the number of filters by 10 at each iteration, up to 100. Next, we added an
additional convolutional layer and repeated the process. We trained our
model after the addition of each new convolutional layer to assess its per-
formance using 10% of training data that were set aside at each iteration. In
this manner, the optimal architecture with four convolutional layers of 30
filters each and one dense layer of 40 filters was established. The kernel sizes
of each convolutional layer were 6 x 6 X 6,3x3x3,3x3x3,and2x2x2
voxels, respectively, to allow extraction of neural features at different res-
olutions in each of the four layers. The rectified linear unit (ReLU) activation
and maximum pooling (MaxPooling3D) layers followed each convolutional
layer to reduce the number of parameters in the model to the most relevant
features. Specifically, the ReLU activation layer transformed the summed
weighted input passed through the convolutional layer into the activation
of a certain neuron of the network, while the maximum pooling operation
calculated the maximum value in each patch of each feature map. The
global maximum pooling layer (GlobalMaxPooling3D) followed the fourth
maximum pooling layer and was introduced to allow the algorithm to
classify input images of different sizes. The Classifier included the final dense
layer of two filters with Softmax activation (i.e., normalized exponential
function), which acted as a classifier to convert the output of this last layer
into the probability of dystonia.

To visualize the biomarker components that were automatically identified
by DystoniaNet, we computed four 3D average feature maps, representing
the different levels of detail of each convolutional layer across 30 filters
(Fig. 1B). The average 3D feature maps of the second, third, and fourth
convolutional layers were zoomed using third-order spline interpolation to
match the size of the standard Talairach-Tournoux space (S/ Appendix). The
significant clusters in each average feature map of the first, second, and
third convolutional layers were localized by filtering out voxels with weights
below 95% of the absolute maximum weight (Table 2). Due to the low
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spatial resolution of the fourth layer (Fig. 1B), significant clusters were not
possible to visualize in this layer.

Benchmark Shallow Machine-Learning Pipelines. The performance of Dysto-
niaNet was compared to the benchmark performance of three different
shallow machine-learning pipelines, including LDA, SVM, and one-layer ANN
(Fig. 10). LDA and SVM were used because both have previously shown a
promising performance with up to 90.6% classification accuracy of laryngeal
dystonia and cervical dystonia, respectively, based on resting-state func-
tional MRI data (24, 25). One-layer ANN was used for its comparability with
deep learning algorithms (details of shallow learning models provided in S/
Appendix, SI Methods).

Due to their lower complexity and inability to handle both feature ex-
traction/selection and classification compared to DystoniaNet, all three
shallow machine-learning algorithms required predetermined input fea-
tures. To determine a robust set of brain alterations as input features while
controlling for single-study cohort- and methodology-related biases in fea-
ture extraction and selection, we conducted meta-analysis of the existing
neuroimaging literature using the activation likelihood estimation (ALE).
Because our training and first independent test sets included patients with
laryngeal dystonia, meta-analysis was also performed on available imaging
studies in laryngeal dystonia, as identified by a PubMed search in accordance
with the Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) guidelines (S/ Appendix). This procedure identified a to-
tal of 221 clusters of structural (29, 32, 38, 55-58) and functional (5, 24, 46,
55-57, 59-62) abnormalities in a cumulative total of 1,084 patients and
healthy controls across 18 studies (S/ Appendix, Table S3). ALE meta-analysis
found six significant clusters of common brain abnormalities across pub-
lished studies (family-wise error [FWE] corrected P < 0.05). The binary mask
of these clusters was used to extract the average gray matter volume and
cortical thickness from T1-weighted MR images in each subject, which were
then used as predetermined input features for each LDA, SVM, and ANN
algorithm (detailed in S/ Appendix).

Deep Learning and Shallow Machine-Learning Training and Performance
Evaluations. Although the employed shallow and deep learning pipelines
differed in their input features (i.e., meta-analytically defined for LDA, SVM,
and ANN vs. fully data-driven for DystoniaNet) due to different require-
ments of their internal models, all pipelines were trained on the same
training set and tested on the same first independent test set, which allowed
direct comparisons of their performance. Specifically, the performance of
each machine-learning pipeline was examined by computing the AUC, sen-
sitivity, and specificity using the first independent test set of 60 patients with
laryngeal dystonia and 60 healthy controls (Table 1). Statistical differences in
performance between the four pipelines were examined using McNemar's
test at two-sided Bonferroni-corrected P < 0.008 to adjust for multiple
comparisons.

To optimize the performance and minimize the diagnostic errors of the
best-performing DystoniaNet algorithm, a dynamic range was introduced
using two optimal thresholds, t, and t,, which converted the output into
three diagnostic decisions: dystonia-yes, dystonia-no, and referral. For a
subject to be classified as having dystonia, the output of DystoniaNet had to
exceed t,; for a subject to be classified as healthy, the output had to be
lower than t,. If the output probability fell between t, and t,, the subject
was classified as a referral for further evaluation. The referral rate was set to
less than 10% of tested subjects (in this case, t, = 0.53 and t, = 0.44) to
balance the compromise between the cost of misdiagnosis and the cost of
additional evaluations while avoiding the deflation of true negatives. Op-
timized DystoniaNet with the dynamic range to manage its diagnostic un-
certainty was retested in 60 patients with laryngeal dystonia of the first
independent test set.

The final performance and diagnostic generalizability of the identified
biomarker and its optimized DystoniaNet algorithmic platform were exam-
ined in the second independent test set of 172 patients with different forms
of isolated focal dystonia, including 59 patients with laryngeal dystonia, 59
patients with cervical dystonia, and 54 patients with blepharospasm (Table 1).
In addition, the second independent test set was used to evaluate the impact
of the MRI scanner hardware, acquisition sequence, and data collection site
on the diagnostic performance of optimized DystoniaNet (detailed in S/
Appendix).

Data Availability. All data relevant to clinical and research information of the
datasets used in this study are included in the manuscript and supporting
information. The datasets used to train and test the machine-learning al-
gorithms are administered by Mass General Brigham. The dataset in its
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entirety is not currently publicly available, but a subset may be requested
from the corresponding author, subject to the data user agreement and the
approval by the Mass General Brigham Data and Tissue Sharing Committee.

Code Availability. All machine-learning algorithms were developed based on
publicly available Python libraries (https:/numpy.org; https:/scikit-learn.org/
stable; https:/keras.io; https://www.h5py.org). Materials and Methods, SI Ap-
pendix, and Fig. 1 contain all details on the architecture of used machine-
learning algorithms needed to reproduce the results. The source code may be
requested from the corresponding author, subject to the approval by the Mass
General Brigham Data and Tissue Sharing Committee and the Mass General
Brigham Innovation.
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