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SI Materials and Methods 

 

Study participants and data collection 
The data were collected by the senior author on this study over the period from 2004 to 2020 at 

three different sites, including Massachusetts Eye and Ear/Mass General Brigham (MEE/MGB), Icahn 

School of Medicine at Mount Sinai (ISMMS), and Intramural National Institute of Neurological Disorders 

of Stroke, National Institutes of Health (NIH). Out of 392 patients with dystonia, MRI data of 325 patients 

were acquired specifically for this study, and data of 67 patients were obtained from our other studies, 

which used similar protocols for clinical evaluation and brain imaging data acquisition (Tables S1 and 

S2). Out of 220 healthy controls, MRI data of 69 controls were acquired specifically for this study; data 

of 43 controls were obtained from other studies conducted by us, and data of 108 controls were obtained 

through the publicly available Information eXtraction from Images (IXI) dataset (brain-

development.org/ixi-dataset/) collected at Hammersmith Hospital, the UK, matching them by their age, 

sex, and scanning parameters with patient cohorts. The study was approved by the institutional review 

boards of the Icahn School of Medicine at Mount Sinai and Mass General Brigham Research Program. 

All subjects gave written informed consent for study participation. Those subjects whose data were 

obtained from other studies conducted by our laboratory gave written informed consent for their data 

sharing between different study protocols. 

www.pnas.org/cgi/doi/10.1073/pnas.2009165117
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The diagnosis of isolated dystonia was confirmed by at least two clinicians and the senior author 

on this study using a recommended multi-disciplinary approach, which was based on a detailed case 

history and neurological and laryngological evaluations, as applicable (1-3). Only patients with confirmed 

diagnosis of isolated focal dystonia were included in the study. That is, those with unclear diagnosis or 

those whose diagnosis was not agreed upon by all examiners were not included. 

None of the patients had any other neurological disorders (except for co-occurring tremor in 32.4% 

of patients), psychiatric, or laryngeal problems. Those patients who received botulinum toxin injections 

for the management of their dystonia symptoms were included at the end of their treatment cycle, at least 

three months after the last injections, when fully symptomatic. Healthy controls were healthy individuals 

without any neurological, psychiatric, or laryngeal problems. None of patients or controls were on any 

medications affecting the central nervous system, and none had any surgery to the body region affected 

by dystonia.  

Subjects were assigned to the three groups as follows (Table 1):  

(I) the training set of 160 patients with laryngeal dystonia and 160 healthy controls, which was 

used to train all machine-learning models;  

(II) the first independent test set of 60 patients with laryngeal dystonia and 60 healthy controls, 

which was used to evaluate the performance of all machine-learning algorithms and further 

optimize DystoniaNet;  

(III) the second independent test set of 59 patients with laryngeal dystonia, 54 patients with 

blepharospasm, and 59 patients with cervical dystonia, which was used to evaluate the 

generalizability of the best-performing biomarker and its optimized algorithmic platform.  

To facilitate the cross-validation of our findings, harmonization within training and testing data 

sets was achieved by using cohorts of patients and healthy controls as clinically homogeneous as possible 

while controlling for several variables, including the age, sex, scanner magnetic field strength, scanner 

vendor, head coil, acquisition sequence, and data collection site. Clinical homogeneity was achieved by 

including only patients with confirmed diagnosis of isolated focal dystonia and excluding those with 

unclear diagnosis and any other neurological (except for co-occurring tremor in 32.4% of patients), 

psychiatric, or laryngeal disorders. Healthy controls were healthy volunteers who expressed interest in 

research study participation and were enrolled from the general population or the publicly available 

databases according to the same study inclusion/exclusion criteria.  
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The age and sex of subjects were tightly balanced between the patient and control groups in the 

training set (all p ≥ 0.37), on which all machine-learning pipelines were designed and trained. Subjects in 

the first and second independent test sets were randomized into their respective groups. The possible 

differences in sex or age distributions in the first and second independent test sets did not affect the 

performance of machine-learning algorithms because their internal parameters were fixed before the 

testing of these data sets was performed.  

To balance the effects of the scanner vendors, hardware, and data collection sites in our large 

dataset to the best of our abilities, we used MRI data from all three scanner vendors and different hardware 

(i.e., head coils) across all acquisition sites in both training and testing sets (Table S2). The parameters of 

the whole-brain T1-weighted sequence protocol (MPRAGE, SPGR, T1-weighted FLAIR) were kept as 

stable as possible across all data sets, both acquired by us and obtained through the public databases (Table 

S3). In all subjects, head movements during scanning were minimized by tightly cushioning and restricting 

the head inside the coil. All images were manually inspected to ensure their quality and the absence of 

gross radiological abnormalities or image artifacts. Raw whole-brain MR images in all patients and 

controls were qualitatively examined for the absence of artifacts, including field-of-view clipping 

anatomy, wrapping artifacts, ringing, striping, blurring, ghosting, radio frequency noise, and signal 

inhomogeneity.  

Based on these stringent inclusion/exclusion criteria and quality control procedures, the final study 

cohort of 504 subjects (392 patients and 112 controls) was selected from our larger database of 695 

subjects that includes 513 patients with dystonia and 182 healthy subjects. Similarly, 108 healthy subjects 

of the IXI database used in the training and first independent test sets were selected from the available 

cohort of 592 subjects to match our subjects by their age, sex, and scanning parameters. 

To further validate the performance of optimized DystoniaNet with respect to its specificity, we 

assembled a third independent test set of 1,480 healthy controls, whose raw structural MRIs were obtained 

from the Human Connectome Project (HCP; N = 1,112; 506 females/606 males; age 28.8 ± 3.7 years), the 

IXI dataset collected at the Hammersmith and Guy’s Hospitals (N = 349; 177 females/172 males; age 48.5 

± 16.3 years), and other similar studies in our laboratory (N = 19; 1 female/18 males; age 39.7 ± 6.9 years). 

None of these healthy controls were included in either training or testing sets of the main study, thus 

representing an entirely independent cohort. MRIs were collected using a T1-weighted MPRAGE 

sequence using 3.0 Tesla or 1.5 Tesla scanners and 8- or 32-channel head coils, similar to the data sets in 

the main study (Tables S1 and S2).
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 Table S1. Scanner hardware and parameters used at different acquisition sites 
 

 
T, Tesla; TE, echo time; TI, inversion time; FA, flip angle; FOV, field of view; SPGR, spoiled gradient-recalled echo; MPRAGE, 
magnetization prepared-rapid gradient echo; MP2RAGE, magnetization-prepared 2 rapid gradient echoes; T1w-FLAIR, T1-weighted 
fluid-attenuated inversion recovery; NIH, National Institute of Health; ISMMS, Icahn School of Medicine at Mount Sinai; MEE/MGB, 
Massachusetts Eye and Ear/Mass General Brigham; IXI, Information eXtraction from Images; HCP, Human Connectome Project; n/a, 
not available. All sequences were acquired in a 3-dimentional (3D) mode. 
 

 NIH ISMMS MEE/MGB IXI HCP 
Number of 
subjects 104 281 138 457 1112 

Scanner GE Philips Siemens Siemens GE Philips Siemens 
Strength 3T 3T 3T 1.5T 3T 1.5T 3T 3T / 1.5T 3T 

Sequence 
MPRAGE MPRAGE MP2RAGE MPRAGE MPRAGE 

SPGR 
 

T1w-FLAIR SPGR MPRAGE MPRAGE MPRAGE 

Head coil 
(channels) 1 / 8 8 32 8 / 12 / 20 12 / 20 / 32 8 32 8 8 8 32 

TE (ms) 
3.0 3.4 2.0 4.8 / 4.1 / 3.4 

1.6 / 2.1 / 
2.0 

6.5 26 3.2 2.1 4.6 2.14 

TI (ms) 
725 / 450 

 
900 

 
633-1000 

1100 /1000 / 
1100 

1200 / 1000 
/ 1000 

450 809 450 900 n/a 1000 

FA (degree) 12 / 10 8 8 15 / 8 / 15 7 / 8 / 8 13 160 12 8 8 8 

FOV (mm) 240x240 210x210 240x240 250x250 256x256 260x260 240x240 240x240 240x240 240x240 224x224 

Slice thickness 
(mm) 1.2 / 1.3 1.0 1.0 1.0 / 1.3 / 1.0 1.0/0.8/1.0 1.0 5.0 0.9 1.0 1.2 0.7 
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Table S2. MRI acquisition parameters and data acquisition sites used in each dataset 
 
 Training set 

160 patients/ 
160 controls 

1st independent 
test set 

60 patients/ 
60 controls 

2nd independent 
test set 

172 patients 

3rd independent 
test set 

1480 controls 

Scanner vendor 
Philips 50% 62% 20% 24% 
Siemens 31% 23% 40% 75% 
GE 19% 15% 40% 1% 
Scanner strength 
3.0 Tesla 100% 100% 61% 79% 
1.5 Tesla - - 39% 21% 
Head coil      
Single-channel 2% 2% 8% - 
8-channel 66% 75% 52% 24% 
12-channel - - 13% - 
20-channel 1% - 9% - 
32-channel 31% 23% 18% 76% 
Scanning site     
NIH 19% 15% 10% 1% 
ISMMS 55% 42% 25% 1% 
MEE/MGB 6% 6% 65% - 
IXI 20% 37% - 23% 
HCP - - - 75% 

NIH, National Institute of Health; ISMMS, Icahn School of Medicine at Mount Sinai; MEE/MGB, 
Massachusetts Eye and Ear/Mass General Brigham; IXI, information extraction from images; HCP, 
human connectome project. 
 

 

Model training and performance evaluations 
Deep learning DystoniaNet pipeline. Details on DystoniaNet architecture are given in the Results 

section of the paper. The total number of floating-point operations (FLOPs) required to generate the output 

was 0.1 megaFLOPs, showing that DystoniaNet was more energy efficient (4) than other pipelines by up 

to six orders of magnitudes (5). As a comparison, popular AlexNet requires 727 megaFLOPs, hence being 

more than three orders of magnitude less energy efficient than DystoniaNet, even though it classifies 2D 

rather than 3D images, as in the case of DystoniaNet. The latter was trained for up to 200 epochs using 

the gradient-based stochastic optimizer Adam with a global learning rate of 10-4 without decay. Early 

stopping was employed to speed up the training of the network by monitoring the validation loss in the 

last 40 epochs. DystoniaNet was implemented in Python 3.6.0 using Keras library v2.2.4 with a 



 6 

Tensorflow v1.14 backend. We trained the model on a Tesla K80 GPU on a Deep Learning Amazon 

Machine Image (AMI) v24.0, run on the Amazon Web Services EC2 p2.xlarge instance. 

Shallow machine-learning pipelines. To select features for the shallow machine-learning pipelines, 

we conducted meta-analysis of neuroimaging literature in laryngeal dystonia following the PRISMA 

guidelines (6). That is, on May 31, 2019, we searched the PubMed online library 

(https://pubmed.ncbi.nlm.nih.gov) for original research articles with the following search query: 

“((laryngeal AND dystonia) OR (spasmodic AND dysphonia)) AND ((functional AND MRI) OR (speech 

AND production AND MRI) OR (resting AND state) OR (fMRI) OR (positron AND emission AND 

tomography) OR (brain AND activity) OR (brain AND activation))) NOT (Review[Publication Type])”. 

This search resulted in 46 papers with no duplicates. We reviewed all 46 papers, and those meeting all of 

the following criteria were included in meta-analysis:  

(1) assessed structural and/or functional data in patients with laryngeal dystonia vs. healthy controls;  

(2) included at least 6 subjects per group;  

(3) reported x,y,z coordinates of abnormal brain regions in standard Talairach-Tournoux or MNI 

space;  

(4) were original peer-reviewed research articles written in English.  

Fourteen papers met these inclusion criteria and were selected for meta-analysis; four papers 

reported both structural and functional abnormalities and were considered as separate studies from meta-

analytical perspective (Table S3). From each study, the number of subjects and the coordinates of 

functionally or structurally abnormal brain regions were manually extracted, resulting in a total of 1,084 

subjects (both patients and controls) and 221 clusters of structural and functional abnormalities. 

Coordinates originally reported in the MNI standard space were converted into the Talairach-Tournoux 

standard space using publicly available GingerALE 3.0.2 software.  

 
Table S3. Summary of studies included in the meta-analysis 
 

Study N Measure x y z 
Standard 

space 
Waugh et al. (11) 48 GMV -6.97 -24.69 6.64 TT 

GMV 7 -22 8 TT 
GMV -5 -20 8 TT 

Kirke et al. (12) 60 GMV -45 9 24 TT 
GMV -30 -9 -5 TT 
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Study N Measure x y z 
Standard 

space 

GMV 30 5 1 TT 
GMV 33 -12 0 TT 
GMV -16 -7 0 TT 
WMV -36 7 19 TT 

Simonyan and Ludlow (13) 80 GMV -39 -18 46 MNI 
GMV 51 17 28 MNI 
GMV -60 -39 24 MNI 
GMV -18 3 -12 MNI 
GMV -34 -42 -60 MNI 

CT -41 -10 34 TT 
CT 51 -10 36 TT 
CT -57 -17 34 TT 
CT 31 -30 55 TT 
CT -35 9 55 TT 
CT -49 33 1 TT 
CT -58 -43 -4 TT 
CT 43 -43 6 TT 
CT -34 -10 -8 TT 
CT -40 -43 38 TT 
CT -55 -37 44 TT 
CT 50 -38 23 TT 
CT 48 -43 24 TT 

Kostic et al. (14) 46 CSA -42 -32 35 TT 
  CSA -63 -22 -1 TT 
  CSA -19 8 52 TT 
  CSA 39 -11 54 TT 
  CSA 54 -18 44 TT 
  CSA -57 -38 36 TT 
  CSA -16 -52 62 TT 
  CSA -26 -61 6 TT 
  CSA -58 -5 10 TT 
  CSA -55 5 2 TT 
  CSA 52 7 5 TT 
  CSA 47 -61 35 TT 
Termsarasab et al. (15) 114 GMV -50 -18 22 TT 
  GMV -21 27 36 TT 
  GMV 64 -27 -5 TT 
  GMV 26 -14 12 TT 
  GMV -50 -11 40 TT 
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Study N Measure x y z 
Standard 

space 
  GMV -6 -61 -12 TT 
  GMV -10 -28 33 TT 
  GMV 39 -28 25 TT 
  GMV 38 -7 13 TT 
  GMV -39 -11 17 TT 
  GMV -44 0 21 TT 
  GMV -54 -39 25 TT 
  GMV 18 3 -1 TT 
Ramdhani et al. (16) 48 GMV -36 -14 60 MNI 
  GMV -51 -50 38 MNI 
  GMV -18 -54 27 MNI 
  GMV -18 -80 -24 MNI 
  GMV 45 -24 32 MNI 
  GMV 48 -17 10 MNI 
  GMV 49 -27 36 MNI 
  GMV -45 -9 9 MNI 
  GMV 40 5 2 MNI 
  GMV -50 -33 -14 MNI 
  GMV -47 -45 37 MNI 
  GMV 49 -47 -12 MNI 
  WMV -27 42 -3 MNI 
  WMV 33 42 -2 MNI 
  WMV 10 5 1 MNI 
  WMV -15 37 1 MNI 
  WMV -9 -51 -30 MNI 
Bianchi et al. (17) 32 GMV -29 -68 50 MNI 
  GMV 31 -9 64 MNI 
  WMV 8 -62 27 MNI 
Haslinger et al. (18) 24 fMRI -32 -34 62 MNI 
  fMRI -36 -34 54 MNI 
  fMRI 64 -12 24 MNI 
  fMRI 64 -6 18 MNI 
  fMRI 4 6 36 MNI 
  fMRI 6 20 40 MNI 
  fMRI 14 0 54 MNI 
  fMRI 22 22 62 MNI 
  fMRI 22 12 62 MNI 
  fMRI -24 30 54 MNI 
  fMRI -8 12 64 MNI 
  fMRI 54 20 10 MNI 
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Study N Measure x y z 
Standard 

space 
  fMRI -14 30 38 MNI 
  fMRI -12 60 26 MNI 
  fMRI 26 -70 52 MNI 
  fMRI 28 -82 30 MNI 
  fMRI -38 -40 -8 MNI 
  fMRI -22 -6 -28 MNI 
  fMRI -28 -70 -50 MNI 
  fMRI -24 -28 60 MNI 
  fMRI 38 -42 56 MNI 
  fMRI 46 -42 52 MNI 
  fMRI 54 -42 40 MNI 
  fMRI -50 -40 36 MNI 
  fMRI -44 -44 50 MNI 
  fMRI 4 -40 52 MNI 
  fMRI 52 18 -20 MNI 
  fMRI 66 -38 4 MNI 
  fMRI 54 -62 -20 MNI 
  fMRI 18 -74 32 MNI 
Simonyan and Ludlow (13) 30 fMRI -43 -33 54 TT 
  fMRI 27 -41 34 TT 
  fMRI -47 -13 32 TT 
  fMRI 43 -7 30 TT 
  fMRI -48 3 23 TT 
  fMRI 60 2 15 TT 
  fMRI -59 -3 14 TT 
  fMRI -32 -10 -10 TT 
  fMRI -55 -37 12 TT 
  fMRI -53 -15 -6 TT 
  fMRI 59 -19 -18 TT 
  fMRI 1 -25 -4 TT 
  fMRI -45 -62 -34 TT 
  fMRI 27 -53 -38 TT 
Kiyuna et al. (19) 12 fMRI -51 -42 17 TT 
  fMRI -55 16 14 TT 
  fMRI 36 12 9 TT 
  fMRI 38 37 4 TT 
  fMRI 22 -64 -27 TT 
  fMRI -32 -62 -27 TT 
  fMRI -53 -16 30 TT 
  fMRI -26 0 -2 TT 
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Study N Measure x y z 
Standard 

space 
  fMRI 24 4 0 TT 
Battistella et al. (20) 113 fMRI -22 -32 63 TT 
  fMRI -60 -26 23 TT 
  fMRI -30 -6 7 TT 
  fMRI 2 -4 57 TT 
  fMRI 62 -18 15 TT 
  fMRI -26 -42 37 TT 
Kiyuna et al. (21) 28 fMRI -20 -10 26 MNI 
  fMRI -50 -6 -44 MNI 
  fMRI 48 52 -8 MNI 
  fMRI 44 -12 28 MNI 
  fMRI 28 -62 56 MNI 
  fMRI 44 -20 58 MNI 
  fMRI 54 -54 46 MNI 
  fMRI -50 28 22 MNI 
  fMRI 0 -86 -10 MNI 
  fMRI 18 -92 16 MNI 
  fMRI -48 -4 -16 MNI 
  fMRI -26 -28 14 MNI 
  fMRI -26 -16 64 MNI 
  fMRI 40 8 0 MNI 
  fMRI 24 -52 -38 MNI 
  fMRI 10 -54 -32 MNI 
  fMRI 54 -14 50 MNI 
  fMRI -44 -16 54 MNI 
  fMRI 26 18 4 MNI 
  fMRI -30 -38 52 MNI 
  fMRI -10 -48 -22 MNI 
  fMRI 14 8 70 MNI 
  fMRI -20 -90 -28 MNI 
  fMRI 24 -80 -20 MNI 
  fMRI -64 -28 18 MNI 
  fMRI -16 -70 -16 MNI 
Putzel et al. (22) 87 fMRI -22 -32 63 TT 
  fMRI 2 -4 57 TT 
  fMRI -60 -26 23 TT 
  fMRI 62 -18 15 TT 
  fMRI -30 -6 7 TT 
Termsarasab et al. (15) 114 fMRI -33 15 38 TT 
  fMRI -37 19 30 TT 
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Study N Measure x y z 
Standard 

space 
  fMRI -30 20 31 TT 
  fMRI -23 8 46 TT 
  fMRI -51 -25 0 TT 
  fMRI -42 -36 8 TT 
  fMRI -40 -35 4 TT 
  fMRI 27 -31 44 TT 
  fMRI 57 -17 28 TT 
  fMRI 1 -23 64 TT 
  fMRI -5 -33 56 TT 
  fMRI 1 21 40 TT 
  fMRI -1 25 30 TT 
  fMRI -23 -77 -36 TT 
  fMRI 11 -70 -15 TT 
  fMRI 15 -67 -14 TT 
  fMRI 57 -21 12 TT 
  fMRI -37 -21 54 TT 
  fMRI -37 -25 42 TT 
  fMRI -31 -21 48 TT 
  fMRI -32 6 29 TT 
  fMRI -7 -49 26 TT 
  fMRI 37 -12 17 TT 
  fMRI 31 19 32 TT 
Kirke et al. (12) 60 fMRI -40 -14 34 TT 
  fMRI 44 -13 29 TT 
  fMRI -49 -9 44 TT 
  fMRI -49 1 6 TT 
  fMRI -57 -27 6 TT 
  fMRI -25 -7 0 TT 
  fMRI -15 -21 -4 TT 
  fMRI 15 -19 -2 TT 
  fMRI 41 11 4 TT 
  fMRI 53 -7 12 TT 
  fMRI 5 -3 58 TT 
  fMRI 45 -53 22 TT 
  fMRI 25 21 46 TT 
Battistella and Simonyan (23) 75 fMRI -30 -14 -1 TT 
  fMRI -22 -16 55 TT 
  fMRI -36 -16 55 TT 
  fMRI -58 -26 21 TT 
  fMRI 24 -24 63 TT 
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Study N Measure x y z 
Standard 

space 

de Lima Xavier and Simonyan (24) 81 fMRI 54 -11 38 TT 
 fMRI 40 10 -8 TT 
 fMRI 51 -50 20 TT 
 fMRI -12 10 -4 TT 
 fMRI 47 -11 34 TT 
 fMRI 37 -22 10 TT 
 fMRI -51 -50 20 TT 
 fMRI 51 -64 20 TT 
 fMRI 37 -15 45 TT 
 fMRI 44 -25 31 TT 
 fMRI 54 -53 34 TT 
 fMRI -51 -46 17 TT 
 fMRI 33 -67 48 TT 
 fMRI 23 20 52 TT 
 fMRI 54 -11 38 TT 
 fMRI 47 -11 34 TT 

Bianchi et al. (17) 32 fMRI 44 -47 55 MNI 
GMV, gray matter volume; CT, cortical thickness; CSA, cortical surface area; fMRI, functional magnetic 
resonance imaging; TT, Talairach-Tournoux standard space; MNI, Montreal Neurological Institute 
standard space. 
 

Meta-analysis was performed using GingerALE software, which calculated the activation 

likelihood estimation (ALE) at each voxel (7) and identified significant locations of common brain 

abnormalities across published studies. GingerALE uses a random-effects algorithm to determine the 

agreement between groups and reported clusters, incorporates variable uncertainty based on the study 

cohort, and limits the effect of a single experiment (8). The ALE significance threshold was set at family-

wise error (FWE)-corrected p ≤ 0.05 by simulating 500 random datasets with the same characteristics as 

the input dataset in terms of the number of clusters, groups, and subjects and applying cluster-forming p 

≤ 0.01.  

The final ALE map of significant clusters was used as a binary mask to extract the average gray 

matter volume and cortical thickness in each cluster in each subject of the training and first independent 

test sets. For this, individual brain images in 440 subjects comprising the training and first independent 

test sets were skull-stripped and segmented into gray matter, white matter, and cerebrospinal fluid tissues 

using standard SPM tissue probability maps of the CAT12 toolbox of SPM12 software. Gray matter 

probability maps were normalized to the AFNI standard Talairach-Tournoux space using a diffeomorphic 
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nonlinear registration (DARTEL) and smoothed using a 6-mm Gaussian kernel full-width at half-

maximum. The final image quality was assessed by visual inspection of the quality check module of the 

CAT12 toolbox. Cortical thickness was estimated using the standard pipeline of FreeSurfer software. All 

brain images were visually inspected for accuracy of cortical boundaries; manual corrections of 

reconstructed surfaces were made, as needed, including the correction of erroneous skull stripping by 

adjusting watershed parameters, manual editing of skull tissue, and an addition of control points to 

normalize intensity for white matter surface reconstruction. Cortical thickness measures were calculated 

based on the shortest distance between gray matter and white matter, as well as gray matter and 

cerebrospinal fluid boundaries at each vertex on the tesselate surface. The cortical thickness maps were 

smoothed using a 6-mm Gaussian kernel full-width at half-maximum. Each participant was, therefore, 

represented by 12 features: six extracted from gray matter volume and six extracted from cortical 

thickness. 

The shallow pipelines used three different classifiers: linear discriminant analysis (LDA), support 

vector machine (SVM), and one-layer artificial neural network (ANN). All classifiers were implemented 

in Python 3.6.0 using the Scikit-learn v0.21.0 library. The predict_proba method of each classifier 

instance was used to estimate the probability of each patient to have dystonia (i.e., value between 0 and 

1) from the selected features. LDA was chosen for the absence of hyperparameters to tune. LDA models 

the class conditional distribution of the input features makes probabilistic predictions using Bayes rule for 

each class and selects the class, which maximizes this conditional probability. LDA assumes each class 

has a normal distribution with the same covariance matrix, hence applying a linear decision boundary 

between classes.  

SVM was selected for its ability to identify nonlinear associations between features and labels, 

without making assumptions about the distribution of the dataset, as opposed to LDA. SVM learns a multi-

dimensional representation (kernel) of the features where the classes could be separated by a hyperplane. 

Depending on the kernel, SVM can efficiently perform both linear and nonlinear classification. In our 

case, we chose a radial basis function kernel, so that SVM could perform nonlinear transformations of the 

features that predict the diagnosis of the subject. Moreover, through the regularization parameter C, SVM 

could assign higher or lower penalties to misclassified data points of the training set. We chose C = 1 as 

we sought a compromise between underfitting and overfitting. Both LDA and SVM showed a previously 

promising performance on resting-state fMRI data in dystonia patients (9, 10).  
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The one-layer ANN was chosen for its comparability with deep neural networks. The ANN is a 

multilayer perceptron classifier composed of an input layer, a hidden layer of six neurons, and an output 

layer. Each neuron used a rectified linear unit (ReLU) activation function to define the output of that 

neuron given a set of features. The ANN was trained using the stochastic gradient-based optimizer Adam 

to optimize the weights associated with the connections between neurons. We used a regularization term 

of 0.0001 to control for overfitting. The input features were normalized by subtracting the mean and 

dividing by the standard deviation on the training set. 

Impact of MRI scanner, acquisition sequence, and data collection site on the accuracy of 
DystoniaNet 

To determine whether the performance of DystoniaNet depends on the MRI scanner, acquisition 

protocols, or data collection site, we stratified our subjects from the most heterogeneous second 

independent test set based on the MR scanner magnetic field strength [3.0 Tesla (N=105), 1.5 Tesla 

(N=67)], scanner vendor [GE (N=69), Siemens (N=68), Philips (N=35)], head coil [number of channels: 

1 (N=13), 8 (N=90), 12 (N=22), 20 (N=15), 32 (N=32)], T1-weighted acquisition sequence 

[MPRAGE/MP2RAGE (N=123), SPGR (N=41), FLAIR (N=8)], and data collection site [MEE/MGB 

(N=112), ISMMS (N=43), NIH (N=17)]. We reassessed the performance of the final optimized 

DystoniaNet in these stratified cohorts for its accuracy of dystonia diagnosis and the referral rate using 

the same pipeline as described above (Fig. 1). 

 

Impact of shallow machine-learning and DystoniaNet algorithmic complexity on diagnostic 

performance  
We used the visualized components (clusters of layers I, II, III) of DystoniaNet-identified 

biomarker to extract the corresponding white matter and gray matter (cortical thickness and gray matter 

volume) values as input features for LDA, SVM and ANN classifiers. Shallow machine-learning pipelines 

were trained using the training set as described above and tested using the first independent test set. By 

keeping the input features of shallow learning pipelines as comparable as possible to those of DystoniaNet, 

this analysis assessed the impact of algorithmic complexity of these pipelines on their overall diagnostic 

potential.  
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SI Results 
 

Performance of DystoniaNet does not depend on MRI scanner, acquisition sequence or site 
The diagnostic accuracy of DystoniaNet was consistently high across the MR scanner magnetic 

field strength and vendors. Specifically, DystoniaNet achieved 98.0% accuracy in diagnosing dystonia 

from 3.0 Tesla data with a 3.8% referral rate, and 100% accuracy from 1.5 Tesla images with a 3.0% 

referral rate (Fig. S1A). Based on the scanner vendor, DystoniaNet achieved 100% accuracy and referred 

two patients (2.9%) using MRI data acquired on the GE scanners, 96.9% accuracy with a referral four 

patients (5.9%) using MRI data acquired on the Siemens scanners, and 100% accuracy with no referrals 

using MRI data acquired on the Philips scanners data (Fig. S1B). 

Similarly, we did not find any dependency of the DystoniaNet performance on the number of 

channels of the head coil used for data acquisition. DystoniaNet achieved 100% accuracy using the head 

coils with 1, 8, and 20 channels, 95.2% accuracy with 12 channels, and 96.8% accuracy with 32 channels 

(Fig. S1C). Referral rate was slightly higher for 20-channel coil (13.3%) compared to 12-channel coil 

(4.5%), 32-channel coil (3.1%), 8-channel coil (2.2%). 

The performance of DystoniaNet was similarly independent of the T1-weighted sequence 

acquisition protocol. It achieved 98.3% accuracy with MPRAGE sequence, referring five patients (4.1%), 

100% accuracy with SPGR sequence, referring one patient (2.4%), and 100% accuracy with the T1-

weighted FLAIR sequence, with no referred patients (Fig. S1D). MPRAGE data represented 72% of 

images in our independent test set, hence showing a proper generalization of the model to a larger dataset.  

Finally, DystoniaNet showed consistently high accuracy when tested on the datasets collected at 

three different sites. The diagnostic accuracy was 99.1% with 3.6% referral rate for data collected at 

MEE/MGB, 97.6% with 2.3% referral rate for data collected at ISMMS, and 100% with 5.9% referral rate 

for data collected at NIH (Fig. S1E). 

Overall, the DystoniaNet-based biomarker performance did not depend on a particular MRI 

scanner magnetic field strength, vendor, head coil, T1-weighted acquisition protocol, or data collection 

site. Particularly interesting is its exceptional performance (100% accuracy with 3% referral rate and no 

misclassified patients) on 1.5 Tesla data, given that the DystoniaNet model was trained on 3.0 Tesla data 

only. These results suggest that the microstructural neural network biomarker identified by DystoniaNet 

may also be used with data acquired at lower resolution. This is particularly encouraging for the clinical 

translation of DystoniaNet, given that clinical MR scanners usually have a limited magnetic field strength. 
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Moreover, the consistently high performance of DystoniaNet across the head coils excludes the possibility 

that the differences in channel distribution between patients and healthy controls in the training set have 

acted as confounding factors in our analysis. 

 
Fig. S1. Performance of 
DystoniaNet based on MR 
scanner magnetic field 
strength, vendor, ac-
quisition sequence, head 
coil, and data collection 
site. (A) Sample axial MR 
images acquired with 3.0 
Tesla and 1.5 Tesla scanners 
(left) and diagnostic 
performance of DystoniaNet 
for MR images in the second 
independent test set grouped 
by scanner’s magnetic field 
strength (right). (B) Sample 
axial MR images acquired 
with MRI scanners from 
different vendors (left) and 
the diagnostic performance 
of DystoniaNet with MR 
images in the second 
independent test set grouped 
by the scanner vendor 
(right). (C) Sample axial 
MR images acquired using 
the head coils with a 
different number of 
channels (left) and 
diagnostic performance of 
DystoniaNet for MR images 
in the second independent 
test set grouped by the 
number of channels of head 
coil (right). (D) Sample 
axial MR images acquired 
with different T1-weighted 
acquisition sequences (left) 
and diagnostic performance 
of the DystoniaNet for MR 
images in the second 
independent test set grouped 
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by the MRI acquisition sequence (right). (E) Sample axial MR images acquired at different sites (left) and 
diagnostic performance of DystoniaNet for MR images in the second independent test set grouped by a 
site of data collection (right). In (A-E), correctly classified patients are represented by circles; misclassified 
patients are represented by triangles; patients referred to further examinations are represented by crosses. 
Colored symbols represent correct dystonia diagnosis; black symbols represent incorrect diagnosis. The y 
axis represents the probability of dystonia as assessed by DystoniaNet; the gray line represents the decision 
boundary; the gray shading represents the area of uncertainty where DystoniaNet refers the subject for 
further evaluation. The corresponding sample size, accuracy (computed excluding referrals), and referral 
rate values are given.  

 
 

Shallow machine-learning algorithms lack the diagnostic power of DystoniaNet  
 To examine the impact of algorithmic complexity of shallow learning pipelines vs. DystoniaNet, 

their performance was re-assessed using the visualized components (clusters of layers I, II, III) of 

DystoniaNet-identified biomarker as input features for LDA, SVM and ANN (Fig. S2A). Using the data 

of the first independent test set, their AUCs were as follows: 72.0% for LDA, 77.7% for SVM, and 58.8% 

for ANN (Fig. S2B and D). The sensitivity and specificity were 46.7% and 75.0% for LDA, 58.3% and 

83.3% for SVM, and 50.0% and 60.0% for ANN, respectively (Fig. S2C). The positive predictive value 

(PPV) and negative predictive value (NPV) were 65.1% and 58.4% for LDA, 77.8% and 66.7% for SVM, 

and 55.6% and 54.5% for ANN, respectively. The McNemar’s tests showed that the diagnostic 

performance of shallow pipelines was similar when using clusters identified by DystoniaNet and clusters 

identified by meta-analysis (LDA p = 0.10; SVM p = 0.54; ANN p = 0.17).  

The overall underperformance of shallow learning pipelines, even when using DystoniaNet-

identified input features, may be explained by the fundamentally low complexity of their internal models 

compared to the deep-learning architecture of DystoniaNet. In addition, the shallow learning architecture 

lacked the dense layer of 40 filters as part of feature extraction (Fig. 1A), which was present in DystoniaNet 

and non-linearly combined the features extracted from informative clusters for increased diagnostic power 

of the deep learning platform. It is also worth noting that DystoniaNet-identified input features for shallow 

learning pipelines were derived only from the visualized components of biomarker in the first three layers 

of DystoniaNet because the significant clusters in the fourth layer could not be visualized due to the low 

spatial resolution (Fig. 2). Hence, the diagnostic information present in the fourth layer of DystoniaNet 

was likely critically missing during training and testing of these shallow machine-learning pipelines. 

Taken together, compared to LDA, SVM and ANN, DystoniaNet demonstrated improved discriminative 

accuracy based on the higher complexity of its model and a superior combination of feature extraction 
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and classification components. These results signify the importance of DystoniaNet as a combined 

framework for both biomarker detection and diagnosis of dystonia. 

 

Fig. S2. (A-D) Performance of shallow machine-learning pipelines using the visualized components 
of DystoniaNet-identified biomarker. (A) Diagram of the shallow machine-learning pipelines extracting 
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features from cortical thickness, gray matter and white matter volumes based on the visualized clusters of 
a biomarker identified by DystoniaNet. The 27 features per subject were used as input for three different 
classifiers: linear discriminant analysis (LDA), support vector machine (SVM), and single-layer artificial 
neural network (ANN). (B) Receiving operating characteristic (ROC) curves for each shallow machine-
learning pipeline using DystoniaNet-identified clusters in the first independent test set of 60 patients with 
laryngeal dystonia and 60 healthy controls. The area under the ROC curve (AUC) values for each pipeline 
are shown in the legend. The dotted line represents the performance of a random classifier. (C) The 
corresponding contingency tables report the number of healthy controls and patients that are correctly and 
incorrectly classified by each shallow machine-learning pipeline. (D) The diagnostic performance of each 
shallow pipeline in the first independent test set. Each symbol represents a subject. Subjects classified as 
patients are represented by circles; subjects classified as healthy controls are represented by triangles. 
Colored symbols represent correct diagnosis; black symbols represent misclassifications. The y axis 
represents the probability of dystonia as assessed by each pipeline; the gray line represents the decision 
boundary. The corresponding AUC values are given for each pipeline. (E) Performance of DystoniaNet 
in an additional third independent set of 1480 healthy controls. Each symbol represents a subject. 
Subjects correctly classified as healthy controls are represented by red triangles; misclassified subjects are 
represented by black circles; referral are represented by gray crosses. The y axis represents the probability 
of dystonia; the gray line represents the decision boundary; the gray shading shows the area of diagnostic 
uncertainty (referral). The corresponding accuracy and referral rate are reported. Data are visualized using 
the Matplotlib library (25). 
 

 

DystoniaNet delivers high specificity on a large independent dataset of healthy controls 
 When tested on the third independent test set of 1,480 healthy individuals, optimized DystoniaNet 

achieved 96.9% accuracy in correctly classifying healthy controls, with 2.6% referral rate (Fig. S2E). 

These results provide additional support for the overall robust and accurate performance of DystoniaNet 

based on the identified microstructural neural network biomarker. 

 

 
References 
 
1. C. L. Ludlow et al., Consensus-Based Attributes for Identifying Patients With Spasmodic 

Dysphonia and Other Voice Disorders. JAMA Otolaryngol Head Neck Surg  (2018). 
2. C. L. Ludlow et al., Research priorities in spasmodic dysphonia. Otolaryngol Head Neck Surg 

139, 495-505 (2008). 
3. B. Balint, K. P. Bhatia, Dystonia: an update on phenomenology, classification, pathogenesis and 

treatment. Curr Opin Neurol 27, 468-476 (2014). 
4. R. Schwartz, J. Dodge, N. A. Smith, O. Etzioni, Green AI. arXiv preprint arXiv:1907.10597  

(2019). 
5. S. Albanie (2017) Memory consumption and FLOP count estimates for convnets.  

(https://github.com/albanie/convnet-burden). 



 20 

6. D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, P. Group, Preferred reporting items for 
systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6, e1000097 (2009). 

7. S. B. Eickhoff et al., Coordinate-based activation likelihood estimation meta-analysis of 
neuroimaging data: a random-effects approach based on empirical estimates of spatial 
uncertainty. Hum Brain Mapp 30, 2907-2926 (2009). 

8. S. B. Eickhoff, D. Bzdok, A. R. Laird, F. Kurth, P. T. Fox, Activation likelihood estimation 
meta-analysis revisited. Neuroimage 59, 2349-2361 (2012). 

9. G. Battistella, S. Fuertinger, L. Fleysher, L. J. Ozelius, K. Simonyan, Cortical sensorimotor 
alterations classify clinical phenotype and putative genotype of spasmodic dysphonia. Eur J 
Neurol 23, 15-17-1527 (2016). 

10. Z. Li et al., Alterations of resting-state fMRI measurements in individuals with cervical dystonia. 
Hum Brain Mapp 38, 4098-4108 (2017). 

11. J. L. Waugh et al., Thalamic Volume Is Reduced in Cervical and Laryngeal Dystonias. PLoS 
One 11, e0155302 (2016). 

12. D. N. Kirke et al., Neural correlates of dystonic tremor: a multimodal study of voice tremor in 
spasmodic dysphonia. Brain Imaging Behav 11, 166-175 (2017). 

13. K. Simonyan, C. L. Ludlow, Abnormal structure-function relationship in spasmodic dysphonia. 
Cereb Cortex 22, 417-425 (2012). 

14. V. S. Kostic et al., Brain structural changes in spasmodic dysphonia: A multimodal magnetic 
resonance imaging study. Parkinsonism Relat Disord 25, 78-84 (2016). 

15. P. Termsarasab et al., Neural correlates of abnormal sensory discrimination in laryngeal 
dystonia. Neuroimage Clin 10, 18-26 (2016). 

16. R. A. Ramdhani et al., What's special about task in dystonia? A voxel-based morphometry and 
diffusion weighted imaging study. Mov Disord 29, 1141-1150 (2014). 

17. S. Bianchi, S. Fuertinger, H. Huddleston, S. J. Frucht, K. Simonyan, Functional and structural 
neural bases of task specificity in isolated focal dystonia. Mov Disord 34, 555-563 (2019). 

18. B. Haslinger et al., "Silent event-related" fMRI reveals reduced sensorimotor activation in 
laryngeal dystonia. Neurology 65, 1562-1569 (2005). 

19. A. Kiyuna et al., Brain activity related to phonation in young patients with adductor spasmodic 
dysphonia. Auris Nasus Larynx 41, 278-284 (2014). 

20. G. Battistella, S. Fuertinger, L. Fleysher, L. J. Ozelius, K. Simonyan, Cortical sensorimotor 
alterations classify clinical phenotype and putative genotype of spasmodic dysphonia. European 
Journal of Neurology 23, 1517-1527 (2016). 

21. A. Kiyuna et al., Brain Activity in Patients With Adductor Spasmodic Dysphonia Detected by 
Functional Magnetic Resonance Imaging. J Voice 31, 379 e371-379 e311 (2017). 

22. G. G. Putzel et al., Polygenic Risk of Spasmodic Dysphonia is Associated With Vulnerable 
Sensorimotor Connectivity. Cereb Cortex 28, 158-166 (2018). 

23. G. Battistella, K. Simonyan, Top-down alteration of functional connectivity within the 
sensorimotor network in focal dystonia. Neurology 92, e1843-e1851 (2019). 

24. L. de Lima Xavier, K. Simonyan, The extrinsic risk and its association with neural alterations in 
spasmodic dysphonia. Parkinsonism Relat Disord  (2019). 

25. J. D. Hunter, Matplotlib: A 2D graphics environment. Computing in science & engineering 9, 
90-95 (2007). 

  
 


