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Abstract— Robot competitions are effective means to learn
the issues of autonomous systems on the field, by solving a
complex problem end-to-end. In this paper, we illustrate Red
Beard Button, the robotic system that we developed for the Sick
Robot Day 2012 competition, and we highlight notions about
design and implementation of robotic systems acquired through
this experience. The aim of the contest was to detect, fetch and
carry balls with an assigned color to a dropping area, similarly
to a foraging navigation task. The developed robotic system
was required to perceive colored balls, to grasp and transport
balls, and to localize itself and navigate to assigned areas.
Through extensive experiments the team developed an initial
prototype, discovered pitfalls, revised the initial assumptions
and design decisions, and took advantage of the iteration
process to perform successfully at the competition.

I. INTRODUCTION

Robot competitions constitute an effective mean in robotic

education [1], [2]. Through the contest students can learn

to address robotic problems and tasks, to work as a group,

to design complex systems including mechanical structure,

electronic components and software architecture, and to

check the initial assumptions with the results on the field.

In common robotic practice as well as in student projects,

researchers and students tend to concentrate on specific

aspects of robotics such as perception with a specific sensor,

localization or navigation. Thus, the main result is a single

component or an algorithm, whose experimental assessment

is usually accurate but aims at achieving proof-of-concept

and sometimes artificial demonstrations. On the other hand,

solutions developed during a robotic competition must be

effective and take into account the interaction of each com-

ponent with the whole robotic architecture. A method that

works correctly in laboratory experiments may not achieve

the same results when used in different setups like those

involved in a competition. Thus, students can learn through

competitions that the whole is more than the sum of its parts

as well as appreciate the importance of tests on the field.

Sick AG, a leading manufacturer in sensor technologies

and laser scanners, organizes Sick Robot Day, a competition

open to student teams from universities and other educational

institutions aimed at promoting mobile robotics and automa-

tion technologies in education. In 2012 Sick Robot Day

reached its fourth edition. While previous editions involved

perception and navigation capabilities, in the latest challenge

the robots were required to detect, fetch and carry balls

with an assigned color to a designated area called pen. The

Fig. 1. The arena of Sick Robot Day 2012 delimited by a fence and three
pens. A pen is shown in the bottom-left.

proposed problem falls in the well-studied category of the

foraging tasks [3]. The contestants had to address several

problems including which sensors to use for detecting balls,

obstacles and pen, how to carry the balls, how to find the

pen, and which tasks to execute. The robot system was de-

veloped under imperfect knowledge of the final competition

environment, shown in Figure 1.

In this paper, we illustrate the robotic system implemented

for Sick Robot Day 2012 and the lessons learned during its

development. The implementation of the control architecture

required the team to make design decisions and assumptions,

and to verify the obtained results on the field. Experiments

have proven fundamental for discovering pitfalls and for

developing more robust and effective solutions. The robotic

competition has proven a valuable experience to check initial

assumptions and to learn how to implement components

that can perform the required tasks in practice. The final

autonomous system has been quite effective and our robot,

Red Beard Button, achieved first place.

The paper is organized as follows. Section II summarizes

the competition rules. Section III illustrates the architecture

of Red Beard Button and shortly describes the development

history. Section IV illustrates the experiments performed

before the competition and the problems met. Section V

discusses the lessons learned in this experience, while sec-

tion VI provides the concluding remarks.



Fig. 2. The robot equipped with Sick LMS100 and TiM300 laser scanners,
Logitech C270 camera, and the motorized fork lift.

II. COMPETITION RULES

This section summarizes the rules of Sick Robot Day

2012 in order to clarify the design decisions to the reader.

The contest takes place in an indoor polygonal arena, whose

diameter size is about 10 ÷ 20 m. The arena contains balls

of three different colors with 20÷ 25 cm diameter. The ring

fence of the arena gaps in three zones where three pens are

placed. Each pen is distinguished by one of the three colors

and is used as a starting position for one of the robots and

as the ball dropping area.

The aim of challenge is to detect, fetch and carry to the

pen as many balls of the assigned color as possible. The

contest consists of several 10 minutes rounds (also called

runs) and three robots compete at the same round, each

looking for balls of a given color. Each robot participates

to two rounds and a different color is assigned in the two

rounds. The score of each round is equal to the number of

balls of the assigned color, except for penalties. The balls

of a wrong color reaching the pen are subtracted from the

score of the round. Furthermore, every contact of the robot

with the fence is sanctioned with a half point and collision

with another robot leads to instant disqualification from the

current round. Contact with balls is allowed irrespective of

their color. Thus, the position of the balls is likely to change

during a run since robots may carry or push them. The final

placement of the teams depends on their best performance

in either of the two rounds. Several details, like ball colors,

exact dimensions of the balls and of the pen, or number of

balls placed inside the arena, were not defined by the rules

of procedure and have been discovered by teams the day of

the competition.

III. ROBOT ARCHITECTURE

In this section, we present the final architecture of the Red

Beard Button robot implemented for Sick Robot Day 2012.

We also briefly discuss the variants implemented before

reaching the final one and the motivation for the design

decisions. The system has been decomposed into parts to

address the main three challenges given by the competition:

ball detection, ball picking and transportation, and robot

localization for returning to the pen. These three tasks are

coordinated by the robot navigation system.

Fig. 3. The robotic architecture of the system composed of ROS framework
nodes.

The robotic platform used in Red Beard Button is a Mobile

Robot Pioneer 3DX equipped with two laser scanners, Sick

LMS100 and Sick TiM300, and a Logitech C270 camera

(Figure 2). The scan plane of the first laser scanner is

approximately parallel and 10 cm above the ground plane.

The perception component detects the balls of the required

color by performing sensor fusion. The device adopted for

carrying balls is relevant for the navigation strategy. Two

ball picking structures have been implemented: a simple

static fork, that requires specific navigation policies to avoid

loosing the ball, and a motorized fork, that lifts and cages

the ball thereby avoiding any occlusion in front of the robot.

A localization and mapping algorithm is required to estimate

the robot position w.r.t. the pen area where the ball must be

dropped. Since the map of the environment is unknown, the

robot must extract landmarks to find its position. The only

stable elements in the given competition arena are the fence

and the pens. Finally, the navigation component handles

the robot task state and coordinates perception and action

using the information provided by the other components. The

different tasks have been implemented as ROS1 nodes and

are illustrated in Figure 3. In the following the details of

different components are illustrated.

A. Navigation

The navigation component is responsible for the execution

of robot motion and for the management of the state of

competition. The navigation task coordinates all the other

tasks, since it receives and uses their outputs to carry out

robot main task. In the arena, the robot interacts with

different kinds of objects:

• static objects like arena fence, that must be avoided in

order not to incur into penalties;

• semi-static objects like balls, that may be moved or

avoided depending on the adopted policy;

• dynamic objects like the other robots, that may lead to

disqualification if a collision occurs.

The presence of several dynamic and semi-static objects in

the arena makes path planning an ineffective solution, since

a plan may quickly become outdated due to the change

1ROS (Robot Operating System - http://www.ros.org) is an open-source
project to build a meta-operating system.



of obstacle configuration. Thus, a reactive approach has

been preferred for robot navigation. The development of

navigation components has been simplified by the choice

of the motorized fork lift that is discussed in section III-C.

The navigation task is divided into several subtasks, each

corresponding to a robotic behavior with a specific goal:

• exploration: the robot moves and searches target balls;

• ball approaching: when a target ball has been detected,

the robot approaches it;

• ball grasping: the robot reaches the ball and raises the

fork;

• transportation: the robot returns to the pen to drop the

ball;

• ball release: the ball is released into the pen.

Figure 4 illustrates the flowchart of navigation decomposed

into subtasks.

Fig. 4. Flowchart of navigation decomposed into subtasks.

Safe navigation is guaranteed by a collision avoidance

behavior, which interrupts the execution of current subtasks

when the distance from the closest obstacle is less than

a given threshold (0.55 m). When collision avoidance is

active, the robot steers in the opposite direction w.r.t. the

obstacle until free space is observed in front of the robot.

Such behavior is disabled only during the approach to or the

release of a target ball.

The exploration task has been developed using a hybrid ap-

proach: the main behaviour is a standard stay-in-the-middle

behavior [4] that allows the robot to move in the environment

keeping about the same distance from the nearest obstacles

on its left and on its right. In order to move to all the

directions and explore the environment, every 12 seconds the

robot randomly steers. During exploration, the robot speed

may reach 0.45 m/s and the fork lift is held raised in order

not to occlude the laser scanner.

When the ball detector component observes a target ball,

the ball approaching behaviour is activated. Then, the mobile

robot rotates towards the centroid of the ball and moves

with a speed proportional to the ball distance. If the ball is

lost, e.g. the collision avoidance switches on, the exploration

task is reactivated to search and reach other interesting

balls. However, the ball tracking module described in the

following avoids intermittent observations of the goal and

prevents unnecessary transitions between ball approaching

and exploration.

When the distance to the ball is less than a given threshold

(about 0.70 m), the fork is lowered and ball grasping task is

performed. During ball grasping the perception of the target

balls and obstacles is handled by a specific procedure due to

the limited field of view of the camera, which prevents the

observation of balls, and the occlusion to the laser scanner

caused by the lowered fork. The robot moves towards the

ball until it correctly grabs the ball or fails. The outcome of

such operation is monitored by a selected subset of frontal

range finder beams that are not occluded. When the ball

is catched, the robot raises the fork and starts to navigate

towards the pen. Otherwise, after having lifted the fork, the

robot resumes exploreing the environment. Since the ball is

caged by the fork, the ball never falls down during the lift.

The navigation back to the pen is driven by the information

provided by the localization module. This subtask directs

the mobile robot towards a goal point placed in the middle

of the pen, setting the orientation properly to approach the

pen frontally. In order to prevent collisions, the collision

avoidance behavior runs in background with higher priority.

Moreover, when the robot is near to the pen (1.2 m) the

linear velocity is reduced to 0.2 m/s to perform a more

accurate motion.

When the final position is reached with the right orienta-

tion, the ball releasing task is activated. After lowering the

fork, the robot pushes the ball in the pen moving forward and

suddenly backward. If the ball is correctly released, the robot

rotates on its axis to about 180◦ and restarts the exploration

of the arena to search another ball of the assigned color.

B. Ball Detection

The main task of the detection module is to distinguish

the target balls from all the other objects placed in the

arena. Therefore, during exploration the robot must be able to

segment its sensor measurements and extract those segments

that meet the requirements of goal objects like shape, aspect

ratio, size, colour and a position consistent with physical

constraints (e.g. balls lie on the ground). Since two different



types of sensors, namely a RGB camera and a laser scanner,

are available, recognition of candidate target balls is sepa-

rately performed in the two sensor domains (laser scans and

images) and the results are associated only in a second phase.

In this way, the algorithm takes advantage of both devices

and, at the same time, processing can be performed by two

separate components. The laser scanner provides an accurate

estimation of ball position, while the camera is able to assess

the color and the aspect ratio of the region-of-interest (ROI)

corresponding to balls.

The robot control application, developed for the ROS

framework, consists of four nodes. The first node is the

CMVision package (Color Machine Vision project) [5] that

extracts blobs of a given color from the frames acquired

from the camera. Since the segmentation of images is inde-

pendent from the laser scanner, it has been easy to integrate

this library package into our system. The second node is

dedicated to the calibration procedure, which is performed

only offline before using the detector. The third node is the

ball detection core component, which processes laser scans

and associates laser segments to the color blobs extracted

by CMVision. The fourth node is a ball tracking node that

addresses the intermittent detection caused by laser scan

and image segmentation failures or by missing associations

between the two sensor domains.

The purpose of the calibration node is the estimation of

the transformation matrix between a point Plaser in the laser

reference frame and the corresponding point Pimg in the

image plane and viceversa as expressed by equation

Pimg = KK · CLT · Plaser

where KK is the intrinsic parameters matrix of the camera

and C
LT the transformation matrix from laser frame to camera

frame. While there are several packages for estimating KK,

the few libraries for assessing C
LT strongly depend on the

setup and the calibration object. The calibration object must

be chosen so that it is possible to detect and match a pair of

homologous points in the two sensor domains. We have in-

vestigated the algorithm proposed in [6] that jointly calibrates

a laser scanner and a camera by matching slices of a planar

checkerboard with the plane of the same checkerboard.

Unfortunately, we have not achieved satisfactory results,

possibly due to the noisy perception of the checkerboard or

to numerical stability problems of the proposed method.

Thus, we implemented an iterative procedure based on

the manual association of the measurements of a ball ac-

quired with the laser scanner and the camera. Although not

automatic, this method allows quick and reliable estimation

and has the advantage of using the object to be detected

(the ball) as a calibration target. This method exploits the

same segmentation procedures of the image and of the laser

scan used during detection. However, since the algorithm

starts from an initial guess of the transformation C
LT to

be estimated, the blobs returned by CMVision are filtered

according to strict criteria on the area and aspect ratio of the

balls. Then, the centroids of the laser segments are projected

into the image plane according to the current value of C
LT and

roughly associated with the blobs. The user can iteratively

change the values of translation and rotation parameters of
C
LT until the projected laser points overlap with the centroids

of blobs.

After the initialization of parameters, the detection cycle

consists of four steps:

• segmentation of laser scan using a discontinuity thresh-

old and selection of intervals checking their diameter;

• projection of these valid segments in the image frame;

• if a segment falls into a bounding box, it takes on its

colour and it is classified as belonging to a ball;

• publication of the recognized balls list, including useful

information for navigation and collection, such as colour

or position in the laser reference frame.

The tracking node has been designed to address intermit-

tent detection of balls due to temporary failure of the ball

detector illustrated before. The node keeps an estimation of

the observed balls by updating their position w.r.t. the robot

according to robot odometry and the sensor observations.

The tracking algorithm implements Kalman filter equations.

Objects that have not been observed for a given time interval,

are removed from the state.

Tests in the laboratory, with controlled light, have shown

that the algorithm is able to identify and locate with sat-

isfactory accuracy all the balls. The association is correct,

even though the calibration is performed with the manual

algorithm. However, larger environments with reflections and

abrupt light changes strongly affect the performance of the

CMVision component. The problems of this component are

further discussed in section IV.

C. Fork Lift

An important requirement to succeed in the competition

was to provide the robot with a device to move the balls

that are inside the arena. Among several possible solutions,

we have built a static fork and a motorized fork lift. The

first device consists of two plain wooden bars that can be

used to push the target ball as shown in Figure 5(a). While

the construction of the two bars is straightforward, such

solution makes the navigation troublesome since the ball

to be transported is not caged and may slip away during

the robot motion. Furthermore, the laser scanner is always

occluded during transportation of the ball to the pen.

The second device is a motorized forklift shown in Fig-

ure 5(b) that can raise the ball when it has been caged among

the fork bars. Since the fork is raised during exploration and

ball transportation, the laser scanner is occluded only during

ball grasping and release. Moreover, the robot does not lose

the ball while moving because the ball is caged above the

robot.

The construction of the motorized fork lift requires a me-

chanical structure, an electric motor, the electronic compo-

nents for its control, and a software interface with the laptop

computer. The required devices are listed in the following.

The system is composed by the following components.

• a DC geared motor with a high reduction ratio, so as
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Fig. 5. The static fork (a) and the motorized fork lift (b) built to cage and
carry balls.

to decrease the maximum speed and increase the torque

output;

• a Microchip Technology Inc PICDem2 board, which

consists of a microcontroller, the output interface with

the powerboard, an Ethernet port and other elements not

used in this project;

• a power board, built in the university laboratory, which

controls the power supply of the motor according to the

logic signals output from the PICDem2 board;

• two limit switches, which signal when the fork is

completely raised or lowered.

The limit switches are the only devices available to monitor

the fork state. No other information is available while the

fork is in an intermediate position.

A ROS node is responsible for the communication be-

tween the laptop computer and the control board through a

custom protocol on TCP/IP port. The microcontroller waits

for commands from the computer and sends control signals to

the motor when it receives a command. To control the motor,

the board generates a PWM modulation: a pair of square

waves, one opposite the other, are generated and overlapped

into a single signal to the motor. The amplitude of the signal

is 12 V . The final performance of the system is satisfactory,

since the fork reliably raises and releases balls.

D. Localization and Mapping

Localization is a crucial task for the successful accom-

plishment of the proposed challenge. When a ball is fetched

using the fork lift, Red Beard Button must reach its pen

and drop the ball there. Without knowing its pose, the robot

cannot plan its path or even guess the direction toward

the pen. The information provided by odometry is unreli-

able, since odometry is sensitive to steering and its error

increases with the travelled path length. In order to estimate

its own position and orientation, the robot requires a map

containing the landmarks or implicit references that can be

easily detected in the environment. When such map is not

available, the system must be able to build a map from the

acquired measurements. This problem has been investigated

by robotic research for decades and is known as simultaneous

localization and mapping (SLAM) [7].

In the scenario of the Sick Robot Day 2012 competition,

a major complication is represented by the lack of stable

and continuously observable landmarks. The arena shown

in Figure 1 chiefly consists of balls, whose position rapidly

changes and which occlude the border of the arena. The fence

and the pens, which appear as gaps in the fence, are the only

two invariants in the scene. Both the candidate landmarks

are distinguishable in a laser scans by detecting aligned

points. Two different approaches have been developed for

map construction and localization, each using one of the two

landmarks. Figure 6 illustrates the output of the two methods.

The first method builds a map of segment landmarks to

represent the boundaries of the arena. These boundaries do

not change, but they may be occluded by other dynamic or

semi-static elements of the environment like balls and other

robots. More in detail, the algorithm performs four main

operations. First, the scans acquired by the laser scanner

are segmented into intervals and are split according to

endpoints [8]. In the second step, the parametric model of

the segment and its uncertainty are computed through least

square estimation within the geometric limits represented by

the two segment endpoints [9]. The association between the

segments and the landmarks already stored in the map is per-

formed using the Hausdorff and the Mahalanobis distances.

Finally, a graph SLAM algorithm takes the odometric data,

the previous landmarks and the landmarks measurements

given by the associations to estimate the pose of the robot.

The sensor model uses the SP Map representation [10]

applied to segments. Instead of using Bayesian filtering, the

map has been represented by a graphical model that encodes

the constraints between the variables of the problem. The

estimation has been performed using the library G2O [11]

for the optimization of constraint networks. Unfortunately,

this promising and general approach has proven unreliable

in this case due to the limited visibility of the fence, as well

as prone to the numerical instability.

The second localization method focusing on the detection

of the pens has been developed to address the limitation of

the first solution. Although there are only three pens in the

arena (one for each robot that concurrently takes part to a

round) and only the initial pen is frequently observed, the

detection of a gap in the fence is rather robust. Furthermore,

the range finder view of the pen is seldom occluded by

balls, since the robot starts with the closest balls right in

front of the dropping area and progressively cleans the space.

The developed method exploits the odometry to predict the

robot pose and then corrects the estimation by using the
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Fig. 6. Ouputs of the two localization and mapping nodes: the segment landmark graphical map (a) and the pen landmark localizer (b).

landmark when available. After taking the ball, the robot

tries to reach the pen assuming that it is located in the

origin of the reference frame, located in the initial pose.

Moreover, it activates the pen detection routine. A pen has

been modelled with two segments lying on almost parallel

lines with a gap in the between. The laser scanner data are

used to build this model using an algorithm based on the

Hough Spectrum and Hough Transform [12]. Whenever a

pen is detected, the system checks whether the pen is the one

assigned to the robot for the current round by computing the

Euclidean distance between the pen and the map reference

frame origin. If this is the case, the current estimation of

the robot pose, which is updated using odometry at each

iteration, is corrected according to the observation.

During the competition the second approach has been

used. This approach has the advantages of being simpler,

more goal-oriented and it better fits the problem. The first

approach would have been more general and the provided

correction potentially more frequent. However, it suffers

from the inaccuracy of the fence detection with several

occluding balls, from the numerical instability of segment

landmarks and from the ambiguity of landmark association

criteria, either based on the segment endpoint position or on

the support line parameters. Moreover, the environment of

the competition had a lot of balls that occluded the laser

perception.

IV. EXPERIMENTS

The development of the robotic architecture illustrated in

the previous section has been supported by experiments in

the Robotics Laboratory of the Department of Information

Engineering (lab) and in the gym of the University of

Parma (gym). The second environment has been chosen

for its presumed similarity with the Sick Robot Day arena

(arena). The three environments are illustrated in Figure 7.

In this section, we present the experimental assessment, the

correction proposed to the observed pitfalls, and the final

result in achieved in the competition.

A. Training Tests

The initial tests in lab allowed the development and fast

testing of some components of the robotic architecture. In

particular, the implementation of the ball detection algorithm,

the fork lift and the robot navigation core have taken advan-

tage of the laboratory test. However, only the next set of tests

in gym allowed the full assessment and the identification of

the system pitfalls. There are two main differences between

lab and gym: the scale and the lighting conditions. The

hallway of the department can be approximately divided into

two narrow trunks, each with size about 10× 2.5 m. On the

other hand, the region of gym used in the experiments has

18 m diameter and is more similar to the competition field.

Such large field does not constrain the robot motion and

allows the tuning of parameters like maximum linear and

angular speeds, segmentation thresholds, and pen size.

During such extensive tests, which have taken place for

about a month, new problems and limitations have been

detected and addressed. First, the ball detection algorithm

failed when the light conditions were difficult as shown in

Figure 7(b). Abrupt changes in light intensity, reflections on

the ground, etc. make the color segmentation of the acquired

frames unreliable. The three colors of the balls (green, yellow

and white) have been announced about 2 months before

the competition, when the detection algorithm had already

been implemented (and team members were busy with exams

and other academic duties). In order to lessen this problem,

some solutions have been developed. For example, the ball

tracking module described in section III-B has been applied

to keep the previously detected position of balls in case

of intermittent detection. The extended components worked

well in the case of green and yellow balls. However, the

detection of white patches in the image is unreliable when

the light conditions are not fully controlled like in lab. This

perception pitfall remained unsolved in the final competition

field, since a radical change of approach and new design of

the ball detection component would have been required to

address it. In fact, color segmentation using an off-the-shelf

component like CMvision has proven unreliable outside the

laboratory. A customized, laser-driven approach could have

been more effective.

An unforseen deadlock condition has been identified in the

fork control module. In a trial, while the robot approached

the ball, the fork has been lowered too early causing the

block of the fork on the ball. Since the robot waits for

completion of fork lowering, the system stays indefinitely

in such state. A trivial solution to address such sporadic
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Fig. 7. Environments where Red Beard Button has been tested: the RIMLab Robotics laboratory lab (a), the gym of the University of Parma (b), and
the Sick Robot Day arena (c).

condition has been implemented by setting a timeout on the

lowering action. If this action is not completed before the

deadline, the fork lift is raised.

In the gym, the localization component has proven to be

crucial for reliable robot operation in large environments.

Estimation of robot pose w.r.t. the pen can be performed

using only the odometry only if the size of the environment

and the travelled path are limited. However, if the robot

moves for 10 minutes at high speed and frequently steers,

the odometric error of Pioneer 3DX largely increases and

the localization of the robot becomes unreliable. In early

odometry-based trials the robot missed the pen with an

error up to 5 m. We then developed the two methods

discussed in section III-D: localization and mapping using

segment landmarks and localization using pens as landmarks.

Experiments on the two methods had to cope with the limited

availability of the gym as well as with the time pressure

of the incoming competition. After some experiments in the

gym, we adopted the approach based on pen detection, which

resulted simpler, more robust and effective. Although only

the starting pen is usually observed due to the travelled path

and occlusions, Red Beard Button has always been able to

reach its target configuration.

B. Competion Results

Sick Robot Day 2012 took place on October 6th in

the Stadthalle in Waldkirch (Germany). Although the rule

of procedure describes the general geometrical features of

the competition field, the arena (Figure 7(c)) was seen

for the first time by the 14 teams from Germany, Czech

Republic and Italy only few hours before the beginning of

the competition. The diameter of the real arena was about

15 m and the arena contained 29 balls for each of the three

colors. The morning was devoted to setup of the mobile

robot, to parameter tuning and system configuration testing

whenever the field was available. Assignment of ball colors

and of the rounds have been announced to the teams just

before the morning trials. The competition started at 2 pm
by alternating 10 rounds of 10 minutes each.

In its first round, Red Beard Button had to collect green

balls. The detection algorithm has always been able to

correctly identify the items with this color both during the

morning tests and in the competition. In fact, during the

competition the robot has collected 7 green balls in the

assigned time. However, Red Beard Button hit the arena

fence four times due to too low safety distance in the

ball dropping phase. Hence, the final awarded score was 5,

accounting for 2 point penalty assigned to our team.

In the second round, Red Beard Button was required

to collect white balls. As mentioned above, correct white

ball detection was an unresolved problem. Due to the non-

uniform lighting and too strong false positive control, Red

Beard Button was unable to fully identify white balls in

the arena. Thus, the ball detection method never estimated

false positives, whereas other teams incurred in significant

penalties due to the collection of balls with the wrong color.

The 5 points score achieved in the first round eventually

placed our team in the first place in the competition, with

the second and third teams obtaining 3 points and 1 point

respectively. The whole system implemented in Red Beard

Button has worked properly, except for the arena edge hits

in the first round and the white ball detection problem in the

second one.

V. DISCUSSION

Experiments and the competition itself have allowed the

team member to learn some lessons about the design and

implementation of autonomous robotic systems. In the fol-

lowing, we propose a list of suggestions that summarize our

experience.

• Perception is the most important reason for the success

or failure in accomplishing a given robotic task. The

correct detection of green balls has allowed the success-

ful execution of the foraging task, while the uncertain

identification of white balls within cautious acceptance

policies has lead to an opposite result. The interpretation

of sensor measurement is critical when the decisions

of the autonomous robot depend on the outcome of a

classifier.

• The robotic system becomes more efficient and less

prone to error when the sensor measurements are col-

lected and organized in a coherent representation. The

importance of the enviroment representation increases

with the complexity of the task and the scale of the

environment where the robot operates. This lesson has

been proven both by the ball tracking module and by the

robot global localizer. The former method is an example



of short-term memory suitable to track dynamic and

ephemeral objects like balls. The success of localization

depends on the presence of invariant elements of the

environment that can be used as landmarks.

• The complexity of the solution should be proportional to

the complexity of the problem. The color segmentation

used to detect balls in images has proven unsatisfactory

in many cases. Such naive approach has not worked well

for white balls outside the robotic laboratory, whenever

the color is not an invariant property of the target

objects. On the other hand, solutions like the general

segment-based graphical map algorithm have proven too

complex for the problem.

• Robot system development should be guided by exper-

iments on the complete system. Each robot component

has been tested in depth in the lab before the integration

tests in the gym, but the problems arose only with the

complete system. Unpredicted conditions may depend

on the interaction among robot components and the

environment: perception deficiencies may appear only

when the robot (and the sensor) moves, the motion

of the robot and the actuated components may be

affected by objects (e.g. the fork blocked by a ball),

etc. Furthermore, the experimental setup should be as

similar as possible w.r.t. light conditions, dimension, etc.

to the environment where the task must be performed.

Of course, experiments are time consuming and the

complete system is not available until the development

reaches an advanced state.

• Robot developers often design and implement the sys-

tem under uncertain information and cannot control

all the possible conditions. For example, the color of

the balls was not initially known and the ball detector

has been designed without exploiting such information.

Moreover, the high density of balls in the competition

arena, which could be critical for a planner, was ap-

parent only the day of the competition. Several critical

conditions arose only during the last extensive exper-

iments. Thus, the only possible countermeasure is to

arrange multiple solutions to address the same task and

to anticipate the criticalities by performing experiments

in difficult environments. Indeed, we developed two

ball carrying tools and two localization methods, and

for each feature the most effective approach has been

selected.

VI. CONCLUSION

In this paper, we have presented Red Beard Button, a

robotic system designed for the Sick Robot Day 2012 com-

petition, and the lessons learned during its development. The

aim of the contest was to detect, fetch and carry balls with

an assigned color to a dropping area, similarly to a foraging

navigation task. The developed robot system consists of sev-

eral software and electro-mechanical components to perceive

colored balls, to grasp and transport balls, and to localize

the robot and navigate to assigned areas. Some subtasks

like ball grasping and localization have been address by

multiple solutions and experiments have proven fundamental

for selecting the most effective one. Through extensive tests

in the field, the team discovered pitfalls, revised the initial

assumptions and design decisions, and took advantage of the

iteration process to perform successfully at the competition.
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