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9.1 � INTRODUCTION

9.1.1 � Brain–Computer Interfaces

A brain–computer interface (BCI) is a system that provides a direct pathway between 
the brain and an external device, allowing people to act on the world without moving 
any muscle. In order to do so, the BCI needs access to the central nervous system 
and, in particular, to the brain. Invasive BCI systems are those that are implanted 
directly into the brain of the user [1,2]. They allow the detection of cleaner signals, 
but they need surgery to be installed. On the other hand, in noninvasive BCIs, the 
insight into the neural processes is most frequently given by electroencephalography 
(EEG) systems that record the electric activity of the brain from the scalp of the user 
[3–15]. EEG-based BCIs have several advantages: they are easy to use, are compact, 
and provide a very good time resolution. Thanks to these, several applications have 
been suggested in the last decades for EEG-based BCIs.

Initially EEG-based BCIs were developed as tools to enhance the quality of life 
of people with severe motor disabilities (e.g., locked-in) [12,16]. In this application, 
the main focus is to provide systems that are reliable, efficient, and easy to use in a 
real context, which includes their portability. They have also been used as passive 
tools for able-bodied users (e.g., for monitoring driver’s attention levels in a car or as 
an extra input to control a videogame) [17,18]. Moreover, if the EEG recording sys-
tem is discreet enough, portable BCIs could be conceived as a wearable device, for 
monitoring changes in brain activity through the day [19]. Indeed, EEG recordings 
are also routinely used for medical applications, for example, for the characterization 
of epileptic seizures and study of sleep and brain lesions [20–22].

While until very recently all BCIs involved an individual user, collaborative BCIs 
(i.e., BCIs that are used simultaneously by several users to control one device) have 
now started to show their advantages in speed and accuracy with respect to non-BCI 
users and single-user BCIs. There are indications that, in the future, they could be 
adopted for use in the workplace, for example, by intelligence analysts [23,24] or in 
group decision making [25].

9.1.2 �A rtifacts and Their Effects on BCIs

Despite all the advantages of these noninvasive BCIs, they also present a major 
drawback associated with the nature of EEG: the neural signals recorded from the 
scalp are highly affected by a variety of artifacts [26,27]. These include the electri-
cal activity of the heart (electrocardiogram), inconsistent contact of the electrodes, 
(for example, because of movements), and muscle artifacts (electromyogram [EMG]) 
such as those induced by neck movements, ocular activity (electrooculogram [EOG]), 
eye blinks, swallowing, and so on. These artifacts can affect the quality of the EEG 
signals recorded, consequently deteriorating the performance of the BCI system.

EOG artifacts, for instance, may be orders of magnitude bigger than the ordinary 
elements of EEG. Therefore, when they are present in the recording, it is usually 
impossible to detect the small variations of the voltages that represent the brain pro-
cesses. EOG artifacts can also lead to extremely larger deviations from the desired 
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221Toward BCIs Out of the Lab

behavior in BCIs, particularly those where there is an analog relationship between 
input signals and output control signals, such as in the Essex BCI Mouse [15,28,29].

For these reasons, the control of artifacts is a very important step in BCI research.

9.1.3 �A rtifact Correction and Rejection and Their Limitations

Fundamentally, there are two approaches one can take to deal with artifacts: correc-
tion and rejection [27,30].

Correction means subtracting out the effects of the artifacts from the EEG signal. 
This requires estimating the contribution of the artifacts on the recorded signal. 
For example, the effects of eye blinks and vertical components of saccades can be 
reduced by using the time-domain linear regression between each channel and the 
vertical EOG [27,31], by using dipole localization procedures [32], or by applying 
independent component analysis (ICA) [33] to decompose EEG signals into indepen-
dent components (sources variability) and subtract from the EEG those that represent 
pure artifacts [34–38]. EMG artifacts could be removed by applying a low-pass filter 
to the EEG signal or by using ICA or regression methods [30,39].

However, while the correction technique is well used in literature to deal with 
EOG artifacts, its application to other sources of noise is not straightforward. Many 
more types of artifacts are not only possible but ubiquitous if the EEG is recorded 
outside the laboratory (for example, for utilization in a portable BCI). Under labora-
tory conditions, experimenters usually ask the volunteers to hand over their mobile 
phones to avoid noise from electrical devices, and the instructions given in the proto-
col ask them to remain as still as possible, try to avoid eye blinks, and so on. While 
these measures are widely accepted in event-related potential (ERP) studies, they are 
not realistic for the daily use of a BCI.

Moreover, despite the wide use of artifact correction methods, some skepticism 
remains as to whether these are actually introducing distortions in the corrected 
EEG data [32]. In order to validate an artifact correction method, one would have to 
first contaminate data and then show how the corrected data compare to the original 
signal before contamination.

The second approach is rejection, where fragments of EEG (or trials) affected by 
artifacts are simply removed from the analysis. Rejection requires the detection of 
artifacts (while correction does not necessarily require it). For instance, two of the 
simplest and fastest automated detectors for EOG artifacts are as follows [27,40]: 
(a) deleting portions of the data where the EOG amplitude deviates by more than a 
set threshold, say, 50 μV or 75 μV, from the baseline; (b) measuring the difference, 
ΔV, between the maximum and minimum EOG amplitude within a block of the sig-
nal and rejecting it if ΔV exceeds a threshold.

Artifact detectors usually require positioning some extra electrodes on the sub-
ject (e.g., around the eyes for EOG detection), making the BCI system less portable. 
Although there are a number of effective techniques to detect and remove artifacts 
(e.g., see Refs. [38,41] for EOG) without the availability of these extra electrodes, 
they are quite complex, especially considering that they should be applied for vari-
ous types of artifacts that could affect the EEG signal.
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222 Wireless Medical Systems and Algorithms

Beyond the system’s complexity, the main disadvantage of artifact rejection is that 
it can significantly reduce the amount of epochs available for ERP analysis [32]. In 
the BCI field, discarding epochs that contain artifacts would slow down the perfor-
mance of the BCI. Depending on the percentage of discarded trials, this might not 
be acceptable for the user. For this reason, since various artifacts can affect the same 
EEG signal, not all contaminated trials can be rejected and, therefore, the rejection 
approach is usually not sufficient to get “clean” signals.

Therefore, it is unlikely to be able to rely on EEG signals that are not affected by 
noise in an EEG-based portable BCI system. If we first focus on the utilization of 
a portable BCI by a disabled person, even in the case of he or she being completely 
locked-in, the environment will introduce noise in the EEG signals that should be 
processed by the system. In this extreme case, it is important that the BCI is built so 
that its performance is not significantly affected by such interference. In the case of 
able-bodied users, the main sources of noise will probably be motion artifacts, and 
it is thus important to know which types of artifacts will be more likely to affect 
performance and how robust a BCI can be with respect to them.

9.1.4 � Contributions of This Study

To start assessing how close we are to performing a transition from the laboratory 
(with seated and static users and noise- and distraction-free environments) to the real 
world (which is noisy, dynamic, and distracting, and in which users constantly move 
and perform other actions besides controlling a computer with their brains), in this 
chapter we studied the impact of several types of artifacts on the performance of a 
BCI. In particular, we wanted to see whether the trained classifier that virtually all 
modern BCIs include could cope with the artifacts.

More specifically, in the following, we will analyze the impact of more than 20 
different types of artifacts on a portable EEG-based BCI system. Instead of dealing 
with artifact rejection or correction, considering the limitations described above, our 
aim is to investigate to what degree a portable BCI applied to everyday life can still 
adequately perform in comparison to a BCI used under laboratory conditions and 
in the absence of noise and artifacts. By considering this high number of different 
types of artifacts, we may be able to figure out which of those have a high impact on 
the performance of the portable BCI system and, on the other hand, for which ones 
the system is robust enough to ignore them. Relatively little is known about how 
much the performance of a portable BCI would be affected by such a wide range of 
artifacts.

The analysis will focus on the artifacts that reflect movements that are typical in 
a driving scenario. Apart from the “classical” artifacts (like eye movements and eye 
blinks), actions like moving the head or changing the gear with one hand will also 
be included. We chose a driving scenario since many possible applications of BCI 
systems are in the automotive area [42]. The Essex BCI Mouse has been shown to 
be suitable for control of a spaceship in a videogame [43]. It is possible to envision a 
system in which a similar controller can be embedded on the windscreen of a car, in 
a way that allows for brain control while driving. Also, portable BCI systems could 
be integrated in a car to monitor the level of attention of the driver and raise an alarm 
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223Toward BCIs Out of the Lab

in case of danger, in order to reduce the possibility of accidents. However, one of the 
main limitations of this application is precisely the large amount of noise generated 
by the movements performed by the driver while he or she is driving. This is the 
scenario on which we focus for the rest of the chapter.

While this serves as a good framework for a first approach to the topic of por-
table BCI, it has obvious limitations. For example, we do not study here walking-
derived artifacts, which of course cannot be applied in a driving task. However, the 
conclusions of this study can be applied not only to driving scenarios but also for 
wheelchair users, gamers, and, in general, any other BCI application in which the 
able-bodied user of the BCI performs a task while remaining seated.

Moreover, this study contributes to bringing BCI out of the laboratory. The con-
clusions drawn about the impact of different types of artifacts could be used for 
portable BCI applications, such as wearable devices, to reduce the complexity of the 
system, focusing the processing mechanisms for artifact correction on those types 
that affect BCI performance most severely.

The chapter has the following structure. Section 9.2 describes the protocol we used 
to record the neural data in the original BCI protocol and the data used to add differ-
ent artifacts to it. Section 9.3 describes the methodology applied to process, classify, 
and analyze the data. In Section 9.4, we show and discuss the results obtained with 
the clean and the artifact-contaminated data sets. Finally, in Section 9.5 we draw 
some conclusions about this work and include suggestions for further work.

9.2 � DATA COLLECTION

This section will focus on describing how the neural data were collected. As we 
mentioned in Section 9.1, rather than utilizing data from a portable BCI, we artifi-
cially added artifacts to BCI data collected under laboratory conditions in previous 
experiments and studied the effects of this added noise on BCI performance. We will 
begin by describing the BCI data (i.e., data acquired during a real BCI experiment) 
and will then continue with an explanation of the protocol that we followed to collect 
new data containing different types of artifacts.

In both cases, data were acquired with a BioSemi ActiveTwo EEG system. Neural 
data were recorded from 64 electrode sites (see Figure 9.4), organized according to the 
10–20 system, and referenced to the mean of the electrodes placed on both earlobes.

9.2.1 � BCI Data

In the present study, we used a subset of the data gathered from 16 participants (aver-
age age of 30, all with normal or corrected to normal vision except for one who had 
strabismus with exotopia in the left eye) in the two experiments reported in Ref. [14], 
where a variety of visual stimulation protocols to be used in a BCI mouse were tested.

As illustrated in Figure 9.1, in the experiments, participants were presented with 
a display containing eight circles (with each circle representing a direction of move-
ment for the mouse cursor) that formed an imaginary circle at the center of the dis-
play. The circles (stimuli) flashed sequentially (by changing rapidly from a baseline 
color to a different color and back) for 100 ms each without any delays in between. 
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224 Wireless Medical Systems and Algorithms

This meant that all eight different stimuli from the imaginary circle flashed within 
800 ms, forming what we call a circle epoch.

The experiments were divided into runs, which we call direction epochs. Each 
direction epoch contained between 20 and 24 circle epochs and, thus, lasted between 
16 and 19.2 s.

At the beginning of each direction epoch, participants were assigned a target cir-
cle and asked to perform the task of mentally naming its color every time it flashed. 
As we will detail below, the flashing of a circle constitutes the beginning of a trial 
epoch. If the flashed circle was the target circle, the trial epoch was labeled as a tar-
get. Otherwise, it was labeled as a nontarget.

Each participant carried out 16 direction epochs, with each circle being a target 
in two of them.

9.2.2 �A rtifacts

As we indicated above, in this chapter, we will be focusing on BCIs that are con-
trolled while the user is driving a car. Hence, we chose a pool of possible actions that 
are typically performed while driving. This activity involves doing several different 
actions, such as looking at side mirrors or changing the gear, that could generate 
artifacts in the EEG recording.

More specifically we decomposed it into 24 different activities representing eye, 
face, neck, arm, and leg movements. The complete list comprises turn/bend neck 
to the left/right, move head up/down, move eyes up/down/to the left/to the right, 
move tongue with the mouth closed, blink once/repeatedly, turn the wheel left/
right, change gear with left/right hand, yawn, swallow, count in loud voice, cross 
left (respectively, right) foot over right (respectively, left), squint, and a baseline “do 
nothing” condition. Some of these activities have been depicted in Figure 9.2.

To generate artifactual EEG signals, we asked a volunteer (27-year-old female) 
to perform the 24 actions (one at a time) while we were recording her brain activity. 
She was asked to perform 15 repetitions of each action, for a total of 360 trials. The 
order in which these were performed was randomized.

The protocol used was as follows. The participant was presented with a display 
showing a black screen. The screen then showed the name of the task (written as in 
Figure 9.2). To avoid ERPs and neural activity related to the processing of the task, 
the participant was asked to wait for 1 s after the onset of the task before performing 

Classifier
EEG

Display

Time

FIGURE 9.1  Stimulation protocol used in our BCI mouse.
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225Toward BCIs Out of the Lab

the required action. She then had a 3-s time window to perform the action. Five sec-
onds after the onset of task presentation, the screen turned black again and stayed 
static until the participant indicated, through the press of a mouse button, that she 
was ready to move for the next task.

The volunteer was seated on an electrically adjustable chair that had been 
unplugged from the mains to prevent it from injecting electromagnetic noise in 
the EEG data. After the recording of the 24 types of movements, she was asked to 
remain still (the screen showed the “do nothing” instruction) while the chair was 
reconnected to the mains. An extra 15 trials were recorded in this scenario.

FIGURE 9.2  Movements performed to generate noise. From top left to bottom right: do noth-
ing, turn neck to the left, turn neck to the right, move head up, move head down, blink, move 
eyes to the left, move eyes to the right, look up, look down, yawn, turn the wheel left, turn the 
wheel right, change gear with the left hand, change gear with the right hand, squint, cross right 
foot over left, cross left foot over right, bend neck to the right, bend neck to the left.
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226 Wireless Medical Systems and Algorithms

9.3 � DATA PROCESSING AND CLASSIFICATION

We begin this section by describing the preprocessing stage for both the BCI data 
and the epochs containing artifacts. We then describe the way in which we blended 
the signals from the two protocols to generate artifact-contaminated BCI data. We 
end the section with a description of our classification approach, including our meth-
ods for electrode optimization and performance assessment.

9.3.1 �P reprocessing BCI Data

The EEG data from the BCI mouse experiment were initially collected at a sam-
pling rate of 2048 Hz, band-pass filtered between 0.15 and 40 Hz, and finally down
sampled to 512 Hz.

From each channel (or electrode), an 800-ms trial epoch starting at the flash-
ing of a circle was extracted and further decimated (with averaging) to a sampling 
frequency of 12.5 Hz. Therefore, a trial epoch was represented by 10 samples per 
channel. If the flashed circle had been identified as the target of the direction epoch, 
that trial epoch was labeled as a target epoch, whereas nontarget epochs were those 
that started with the flashing of a nontarget circle.

Since the nontarget trials were much more frequent than the target ones (7 out of 
every 8 trials were nontargets), we balanced the two classes by randomly subsam-
pling the nontarget trials on a participant-by-participant basis, in order to improve 
the performance of the classifier.

The data sets created from these data will be referred to in the rest of the chapter 
as D0.

9.3.2 �P reprocessing Artifacts

For each trial, we extracted an artifact epoch starting 1 s after the presentation of the 
task and lasting 3 s.

As before, also artifact epochs were referenced to the mean of all EEG channels 
and to the mean of the earlobes, band-pass filtered between 0.15 and 40 Hz and 
downsampled by a factor of 4, to the final sampling rate of 512 Hz.

Since these artifacts were added to “clean” BCI data from a different experiment, 
we then detrended each trial to ensure that the beginning and end of the epochs 
were 0 and, thus, no discontinuities were introduced in the BCI data when adding 
an artifact.

One to three detrended artifact epochs were then added to the BCI data at random 
positions in each direction epoch (more on this in Section 9.3.3).

9.3.3 � Creation of Simulated Portable BCI Data Sets

In order to determine the impact of different types of artifacts on a BCI, we created 
a number of simulated portable BCI data sets, each of which consisted of “noisy” 
epochs Epi,j,k for each participant of the BCI mouse experiment, where i ∈ {1,…,16} 
is the direction epoch from which the BCI data are extracted, j ∈ {1,…,25} is the 
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227Toward BCIs Out of the Lab

type of artifact that has been added to the neural data, and k ∈ {1,2,3} is the number 
of occurrences of that type of artifact in each direction epoch.*

Each channel of Epi,j,k is obtained by adding a direction epoch extracted from the 
BCI data (Epi) and a new epoch, which we call Epj,k, of the same length as Epi, which 
contains k artifact epochs from the new signals recorded from our volunteer. That is,

	 Epi,j,k = Epi + Epj,k.	 (9.1)

The process of creation of Epj,k is depicted in Figure 9.3. First of all, a new struc-
ture of the same length of Epi is created and filled with 0’s. Second, k random artifact 
epochs from the pool of 15 of type j are selected. These are added to the newly gener-
ated structure at random locations with the condition that no more than one artifact 
could be present at each sample.

In order to have data that are consistent, each channel of the recorded artifact was 
added to the corresponding channel of the BCI data. That is, each generated chan-
nel of Epi,j,k contains the summation of BCI data from that channel and k randomly 
placed artifacts as read on the same electrode site.

Finally, after the creation of Epj,k, this structure is added to a given run of the BCI 
mouse data (Epi) before extracting and preprocessing the individual 800-ms trial 
epochs that are used for classifying trials.

Since we add between one and three 3-s artifact epochs to direction epochs lasting 
between 16 and 19.2 s, the percentage of contamination in the data sets ranges from 
15%–19% (depending on the length of a direction epoch) for k = 1 to 47%–56% for k = 3.

The procedure described above creates a total of 75 data sets for the simulated 
portable BCI. We will term each of these Dj,k, where, as above, j is the type of artifact 
that has been used to contaminate the original BCI data set and k is the number of 
artifact epochs added to a direction epoch.

9.3.4 �F eature Extraction

Various features have been used in BCI research to extract meaningful information 
from the EEG signal and improve the classification performance. In order to capture as 

*	Since the epochs extracted and preprocessed from the artifact experiment (3 s) are much shorter than 
those of a direction epoch of the BCI mouse (Epi, between 16 and 19.2 s as described in Section 9.2.1), 
it is possible to have multiple artifacts occurring within a run. This allowed us to investigate the effect 
of different levels of contamination in the BCI.

3 s 3 s

3 s
Artifact

Epj,k

1619.2 s

FIGURE 9.3  Process of creation of Epj,k.
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228 Wireless Medical Systems and Algorithms

much information as possible, we used an optimal subset of the EEG signals recorded 
from the 64 electrode sites as neural features that were given to the classifiers.

The process of choosing the best subset of channels was composed of two steps: 
feature reduction and feature selection.

First, we performed a feature reduction step to reduce the number of electrodes to 
be considered for the optimization process. We randomly split the original BCI data 
set into a training set (80%) and a test set (20%), keeping the same proportion of tar-
get and nontarget trials as in the original data set D0. Then, we normalized both sets 
by subtracting the mean value and dividing by the standard deviation of the training 
set. The test set was kept separate for later use (described in Section 9.3.5) while 
we used a five-fold cross-validation loop on the training set to train and validate a 
Fisher discriminant analysis (FDA) classifier that used all possible combinations of 
subsets of electrodes as features. We then used the area under the curve (AUC) of 
the receiver operator characteristics (ROC) to rank the different subsets. The AUC 
is a well-known summary for ROC curves that has been used widely in machine 
learning—more on this in Section 9.3.5. By looking at each best subset of electrodes 
of each participant, we manually selected the electrodes that appeared in the best set 
at least in seven out of the eight volunteers. These were the electrode sites O2, PO8, 
Cz, PO4, PO7, PO3, Pz, Oz, and P8 shown in Figure 9.4. These electrodes cover the 
area where the P300 ERP is most easily detected.

A1 B1 B2

B3
B4B5

B6 B7 B8 B9 B10

B11B12B13B14B15

B16 B17 B18 B19 B20

B21B22B23B24

B25 B26 B27
B28

B29
B30B31

B32

A3

A7 A6 A5 A4

A11

A15 A14 A13 A12

A19A18A17A16

A24
A23

A22 A21 A20 A31

A30A26A25

A27A29

A28

A32

A10A9A8

A2
Fp1

Fpz
Fp2

AF7 AF3 AFz AF4 AF8

F8F6F4F2FzF1F3F5F7

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

T8C6C4C2CzC1C3C5T7

TP7 CP5

P9

P7 P5
P1 Pz P2 P4 P6 P8

P10
PO8PO4DRLPOzPO3PO7

CMS

O2O1
Oz

Iz

P3

CP3 CP1 CPz CP2 CP4 CP6 TP8

FIGURE 9.4  The electrodes available in our EEG acquisition system. The gray locations 
represent the electrodes selected after feature reduction.
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229Toward BCIs Out of the Lab

Second, we used this optimal set as a pool of electrodes in the feature selection 
step that was common for all participants. Then, using the training set from either 
the original D0 data set or the simulated portable BCI data sets, we tested all the 
possible subsets of between three and nine electrodes to find the best combina-
tion of features for each participant and type of data set using a five-fold cross-
validation loop. The features from the optimal sets of electrodes found in this way 
were then used to train individually tailored classifiers, as we will explain in detail 
in Section 9.3.5.

9.3.5 � Classification

In order to classify the features extracted from D0 and the artifact-contaminated data 
sets into the target and nontarget classes, we relied again on the FDA classifier, since 
it is frequently used in BCI research and it is efficient for real-time portable BCI use.

First, for each participant (p = 1,…,8), we used the optimal subset of electrodes 
that had been derived as described in Section 9.3.4 to extract features from the train-
ing set of D0. These were used to train a classifier Cp that was specific for each par-
ticipant, as is commonly done in BCI.

Then, we used the trained Cp to predict the classes (target versus nontarget) of the 
unseen trial epochs from the test sets of D0 and Dj,k (the original BCI data set and the 
simulated portable BCI data sets, respectively). Results from this first experiment are 
reported in Sections 9.4.1 and 9.4.2.

After training, the output of the FDA classifier can be interpreted as a measure 
of how closely the feature vector associated with the stimulus matches the target. 
By applying a threshold to this measure, one can transform it into a binary decision 
regarding the presence of a target. Naturally, the higher the threshold is, the less 
likely a false-positive error will be. However, unavoidably, a higher specificity brings 
a lower sensitivity (i.e., an increased number of false negatives) with it.

The behavior of our classifiers in relation to changes in their thresholds can be 
well represented using ROC curves. These are plots of the true-positive versus the 
false-positive rate for a binary classifier as its discrimination threshold is varied.

To measure the performance of Cp on each of the two data sets, we used the 
AUC of the classifier output. However, these results can be biased in favor of the 
original BCI data, since the classifiers were derived from training data from D0. 
Indeed, the addition of artifacts to create Dj,k affects the features extracted and, 
consequently, can obscure the useful information that was originally available 
to the classifier when it derived a rule for predicting the label of a trial epoch. 
Moreover, the best set of electrodes found for the original BCI data set could 
be different from those found for the portable BCI data set (e.g., if the optimal 
subset of electrodes is calculated after adding the noise, the feature selection step 
will try to avoid selecting electrodes that are heavily affected by it).

Therefore, we augmented our analysis by training a number of classifiers Cp,j,k 
with the training set (generated as described in Section 9.3.4) of the simulated por-
table BCI data sets, where the subscripts have the same meaning as above. For each 
of these, an optimal subset of three to nine electrodes was derived before training 
the classifiers.
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230 Wireless Medical Systems and Algorithms

Finally, we used each Cp,j,k to predict the classes of the trials in the associated 
test set and the AUC to measure the performance. The results of this analysis are 
reported in Section 9.4.3.

9.4 � RESULTS

9.4.1 � Baseline

In order to measure the extent to which a certain type of artifact affects the BCI, we 
first need to assess its performance under ideal laboratory conditions.

Table 9.1 shows the AUCs obtained using, for each classifier Cp, the training and 
test sets of participant p ∈ [1,8] extracted from the BCI mouse data set D0.

We can observe that, with the approach described above, we achieved lower AUC 
values than those reported in Ref. [14]. This is reasonable since we used a lower num-
ber of features and a less complex classifier (FDA instead of a linear support vector 
machine) than the original research, in order to simplify the BCI system. However, 
in this chapter, we focus on the differences in performance between original and 
artifact-contaminated data sets, and not on the absolute performance of the BCI 
system.

9.4.2 �P erformance on Simulated Portable BCI Data Sets

After measuring the performance of our BCI under ideal laboratory conditions, we 
simulated the case in which one would train the classifier with data collected in 
the laboratory, in nearly ideal conditions, and then test the portable BCI out of the 

TABLE 9.1
AUC Values Obtained by Our BCI 
for Each Participant for Target 
versus Nontarget Classification

Participant AUC

1 0.806

2 0.747

3 0.786

4 0.824

5 0.774

6 0.778

7 0.843

8 0.849

Mean 0.801

Median 0.796

Note:	 The last rows report the mean and 
median values across all participants.
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231Toward BCIs Out of the Lab

laboratory. For this, we used the same classifiers Cp developed in Section 9.4.1 but 
calculated the AUC on the simulated portable BCI data sets (Dj,k).

In this way, we can study the effects that each type of noise has on the perfor-
mance of the BCI. The results of this analysis are collected in Table 9.2, where each 
value represents the median AUC across the individual classifiers Cp when testing 
on data from participant p ∈ [1,8] from the data set Dj,k. The numbers in brackets 

TABLE 9.2
Performance of the BCI When Trained with Trials from D0 and Tested 
on Epochs from Dj,k

Noise Type k = 1 k = 2 k = 3 Rank

Turn neck to the left 0.775 (0.117) 0.716 (0.003) 0.706 (0.000) 22

Turn neck to the right 0.763 (0.065) 0.761 (0.025) 0.741 (0.010) 20

Move head up 0.747 (0.019) 0.736 (0.002) 0.686 (0.000) 25

Move head down 0.769 (0.065) 0.715 (0.001) 0.692 (0.001) 24

Move your tongue (mouth closed) 0.780 (0.323) 0.759 (0.025) 0.753 (0.032) 12

Move eyes to the left 0.766 (0.065) 0.768 (0.032) 0.769 (0.025) 8

Blink once 0.786 (0.439) 0.745 (0.080) 0.768 (0.014) 10

Blink repeatedly 0.793 (0.287) 0.768 (0.014) 0.763 (0.032) 2

Move eyes to the right 0.774 (0.139) 0.762 (0.080) 0.752 (0.025) 13

Look up 0.785 (0.334) 0.758 (0.052) 0.739 (0.002) 17

Look down 0.778 (0.253) 0.761 (0.052) 0.731 (0.019) 18

Turn the wheel left 0.773 (0.171) 0.776 (0.097) 0.752 (0.007) 9

Turn the wheel right 0.784 (0.191) 0.761 (0.010) 0.743 (0.019) 15

Change gear with left hand 0.785 (0.171) 0.775 (0.080) 0.756 (0.041) 5

Change gear with right hand 0.793 (0.221) 0.766 (0.117) 0.747 (0.007) 7

Do nothing 0.789 (0.323) 0.763 (0.032) 0.773 (0.080) 1

Yawn 0.786 (0.253) 0.750 (0.014) 0.747 (0.005) 16

Swallow 0.772 (0.080) 0.761 (0.035) 0.758 (0.007) 11

Count in loud voice 0.784 (0.360) 0.774 (0.065) 0.764 (0.032) 3

Cross left foot over right 0.780 (0.262) 0.749 (0.005) 0.758 (0.032) 14

Cross right foot over left 0.780 (0.191) 0.756 (0.019) 0.730 (0.003) 19

Squint 0.787 (0.287) 0.765 (0.080) 0.755 (0.032) 6

Bend neck to the right 0.775 (0.052) 0.715 (0.000) 0.696 (0.000) 23

Bend neck to the left 0.765 (0.065) 0.735 (0.003) 0.726 (0.000) 21

Electrical noise 0.778 (0.145) 0.772 (0.032) 0.769 (0.032) 4

Mean 0.778 0.755 0.743

Note:	 Each number represents the median AUC across all participants for a specific type of artifact 
(from top to bottom, j = 1, …, 25) and the given number of occurrences (k = 1, …, 3). The last 
row represents the average AUC across data sets Dj∈[1,25],k. Numbers in parentheses represent 
the p values of a one-sided Wilcoxon test comparing BCI performance of classifiers Cp when 
tested on D0 versus the same classifiers tested on Dj,k. Numbers in italics represent statistical 
significance at the 5% confidence level. Numbers in boldface represent statistical significance 
at the 1% confidence level. The last column represents the ranking table (low numbers repre-
sent higher AUCs) determined by the mean value across columns k = 1, 2, 3.
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232 Wireless Medical Systems and Algorithms

represent the p values of a one-sided Wilcoxon test comparing BCI performance of 
classifiers Cp when tested on D0 versus the same classifiers tested on Dj,k.

Figure 9.5 shows examples of real trial epochs (after preprocessing) extracted 
from D0 (blue line) and corresponding artifact-contaminated epochs from Dj,k (black 
line). In this figure, we represent the effects of different types of artifacts that are 
approximately at the 90th percentile (“Blink once”, at the top of the figure), 50th per-
centile (“Look down”, in the middle), and 10th percentile (“Bend neck to the right”, 
at the bottom) of the sample for k = 3. Hence, these examples represent the cases 
where the BCI is least, average, and most affected by noise, respectively.

In order to explain the results obtained, we created a ranking system where the 
first positions are those for which the average across columns k = 1, 2, 3 is highest. 
The first position is then taken by the action “Do nothing” (as expected). In this 
case, the type of noise that is being added to the BCI data set is an EEG signal with 
no other source of contamination. Thus, it is reasonable that the performance of the 
simulated portable BCI is not largely affected by the addition of this artifact, even 
though different electrode impedances will result in differences in signal amplitude, 
since the data have not been normalized.
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FIGURE 9.5  Examples of epochs from D0 and Dj,k. Top: target trial with an eye blink at 
electrode site Cz; middle: target trial with an eye movement (“Look down”) at Cz; bottom: 
target trial with a neck movement (“Bend neck to the right”) at Oz.
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233Toward BCIs Out of the Lab

Other artifacts that dominate the ranking are “Electrical noise” and “Squint”. 
Again, the contribution of these should not largely affect BCI performance, given 
that we are filtering the data above 40 Hz. Mains noise appears as a frequency com-
ponent of 60 Hz, so our filter removes most of it. Similarly, EMG artifacts from 
muscle contractions, such as those produced by squinting, can be eliminated by low-
pass filtering the signals above 30 Hz.

At the lower end of the ranking, we mostly find artifacts related to neck move-
ments (e.g., those that involve bending or turning the neck). This is not an unexpected 
result for one main reason: during the data collection of artifacts, the volunteer had a 
head rest on the chair, so neck movements most likely also involved changes in elec-
trode position, with associated sustained voltage shifts. This is clearly represented 
in Figure 9.5 (bottom), even if the artifact epoch was preprocessed before adding it 
to the direction epoch. However, head rests are also available on a car; hence, the 
results obtained with our simulated portable BCI data sets are likely to be very simi-
lar to real data collected from a driver.

The last row of Table 9.2 represents the average value of each column, so that the 
effects of increasing the interference of artifacts on the BCI data can be observed in 
this summary. As expected, performance decreases monotonically with increasing 
values of k (i.e., when more noise is present, the number of false positives and false 
negatives increases, and as a result, we obtain lower AUC values). Even though this 
decrease is not statistically significant for k = 1 (only one type of artifact reaches sta-
tistical significance in this case), the effects of adding noise have a substantial impact 
on performance, as shown in the last column of the table, where for 24 out of the 25 
types of artifacts (the only exception is the “Do nothing” activity, as expected), the 
performance of the BCI is significantly worse than in the ideal conditions of the BCI 
mouse experiment.

This raises the question of whether it is worth including some noisy trials when 
training the classifiers, once the types of artifacts that will later be encountered dur-
ing the use of the portable BCI are known.

9.4.3 �E ffects of Training with Simulated Portable BCI Data Sets

If one knows in advance the type of artifacts that are more common in a mobile 
application of a BCI, he or she could wonder whether it is better to include some 
noise of that type during training the classifier, in order to increase the robustness of 
the system, or if performance is better when the training set is composed only of data 
collected under ideal conditions.

In order to check this, we performed an extra experiment in which we trained 
and tested classifiers using data from the simulated portable BCI data sets only. 
In particular, for each tuple ( j,k), where j is the type of artifact and k is the num-
ber of occurrences of that type of artifact in each direction epoch (and, thus, gives 
an idea of the percentage of contamination in the data set), we trained classifier 
Cp,j,k with the training set of participant p from data set Dj,k and then calculated the 
individual AUC with the test set of that participant from the same data set. Table 
9.3 reports the median AUC across all participants obtained in this way. The num-
bers in brackets represent the result of a one-sided Wilcoxon test comparing the 

D
ow

nl
oa

de
d 

by
 [

A
na

 M
at

ra
n 

Fe
rn

an
de

z]
 a

t 0
7:

49
 1

4 
M

ar
ch

 2
01

6 



234 Wireless Medical Systems and Algorithms

AUCs from classifiers Cp,j,k (described above) with those of the baseline case (from 
Section 9.4.1).

As in the previous case (Section 9.4.2), we expected the AUCs to drop signifi-
cantly with respect to the baseline case, especially for larger values of k. Indeed, this 
result was replicated, and the p values reported in Table 9.3 show that the differences 
for this case versus the original BCI data are more statistically significant.

TABLE 9.3
Performance of the BCI When Trained and Tested on the Simulated Mobile 
BCI Data Sets

Noise Type k = 1 k = 2 k = 3 Rank

Turn neck to the left 0.742 (0.002) 0.741 (0.007) 0.708 (0.001) 21

Turn neck to the right 0.747 (0.032) 0.750 (0.041) 0.710 (0.001) 20

Move head up 0.716 (0.002) 0.686 (0.000) 0.668 (0.000) 25

Move head down 0.749 (0.052) 0.735 (0.007) 0.700 (0.001) 23

Move your tongue (mouth closed) 0.777 (0.164) 0.769 (0.041) 0.749 (0.003) 3

Move eyes to the left 0.777 (0.139) 0.747 (0.032) 0.760 (0.032) 6

Blink once 0.766 (0.065) 0.744 (0.010) 0.734 (0.002) 17

Blink repeatedly 0.769 (0.080) 0.750 (0.010) 0.738 (0.005) 14

Move eyes to the right 0.769 (0.097) 0.753 (0.014) 0.756 (0.020) 7

Look up 0.788 (0.287) 0.729 (0.001) 0.725 (0.010) 18

Look down 0.766 (0.065) 0.765 (0.052) 0.747 (0.005) 9

Turn the wheel left 0.782 (0.171) 0.770 (0.139) 0.766 (0.014) 1

Turn the wheel right 0.779 (0.145) 0.738 (0.032) 0.728 (0.001) 16

Change gear with left hand 0.775 (0.139) 0.759 (0.007) 0.755 (0.019) 4

Change gear with right hand 0.779 (0.164) 0.777 (0.117) 0.754 (0.019) 2

Do nothing 0.780 (0.097) 0.766 (0.041) 0.739 (0.002) 5

Yawn 0.768 (0.221) 0.733 (0.002) 0.761 (0.041) 11

Swallow 0.766 (0.097) 0.752 (0.005) 0.742 (0.007) 12

Count in loud voice 0.754 (0.032) 0.753 (0.052) 0.734 (0.005) 19

Cross left foot over right 0.766 (0.080) 0.751 (0.010) 0.731 (0.002) 15

Cross right foot over left 0.775 (0.164) 0.740 (0.010) 0.762 (0.014) 8

Squint 0.777 (0.117) 0.744 (0.010) 0.737 (0.010) 13

Bend neck to the right 0.761 (0.117) 0.687 (0.001) 0.682 (0.000) 24

Bend neck to the left 0.759 (0.052) 0.713 (0.003) 0.713 (0.001) 22

Electrical noise 0.761 (0.014) 0.759 (0.007) 0.749 (0.007) 10

Mean 0.766 0.744 0.734

Note:	 Each number represents the median AUC across all participants for a specific type of artifact 
(from top to bottom, j = 1, …, 25) and the given number of occurrences (k = 1, …, 3). The last 
row represents the average AUC across data sets Dj∈[1,25],k. Numbers in parentheses represent the 
p values of a one-sided Wilcoxon test comparing BCI performance of classifiers Cp when tested 
on D0 versus classifiers Cp,j,k tested on data sets Dj,k. Numbers in italics represent statistical sig-
nificance at the 5% confidence level. Numbers in boldface represent statistical significance at 
the 1% confidence level. The last column represents the ranking table (low numbers represent 
higher AUCs) determined by the mean value across columns k = 1, 2, 3.
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235Toward BCIs Out of the Lab

If we now compare Table 9.3 with Table 9.2, we see that the ranking column 
shows no differences in the last positions of the ranking, which are still dominated 
by neck movements. In general, the order of the ranking list is maintained across 
all artifacts. However, there are some types of artifacts for which large variations 
are registered. In particular, the main changes in the ranking order are given by eye 
movements (e.g., “Move eyes to the right”, “Look down”), which are now higher on 
the list than previously. Conversely, the main decreases on the ranking are given by 
eye blinks (both for one blink and several blinks). This suggests that this method 
is more robust to some types of artifacts than the one presented in Section 9.4.2. 
However, despite the changes in ranking order, the mean AUCs from which the rank-
ings were calculated are still higher in Table 9.2 (i.e., when the classifiers are trained 
using only BCI data).

To answer the question of whether training with artifact-contaminated data is 
more suitable for portable BCIs than training under ideal circumstances, we checked 
for significant differences between the results of Table 9.2 versus Table 9.3 with a 
one-sided paired Wilcoxon test (results not reported). According to this, the only 
case in which the latter is significantly worse than the former consistently across all 
values of k is the “Blink once” activity (p values for k = 1, 2, 3 are 0.04, 0.039, and 
0.02 respectively). Thus, despite the last row of both tables having such different 
mean values, it seems that (except when including blinks) training with noisy data 
will not affect the performance of the portable BCI during its use. Indeed, only in 4 
out of the 25 types of artifacts was the difference between both methods significant 
for k = 3.

When taken together, all the evidence seems to point out that the first method of 
those presented (i.e., training with laboratory data) is either equal or significantly 
superior to the second, especially given the fact that eye blinks cannot be totally 
avoided during BCI use. However, when making this decision, one should also bear 
in mind that a lot of work has been done in terms of artifact correction methods for 
eye blinks.

9.5 � CONCLUSIONS AND FUTURE WORK

BCIs have a great potential both in and outside of the laboratories. However, for this 
technology to work outside the ideal laboratory conditions, it is necessary to make it 
robust to artifacts and interferences.

Much of the noise that contaminates EEG data comes directly from the user in 
the form of EMG and EOG artifacts. Hence, for a portable BCI, it is important to 
characterize these and develop effective artifact correction methods that deal with 
them without affecting overall BCI performance and speed.

In this chapter, we ranked 25 types of artifacts on the basis of their effect on BCI 
performance decay. These included several forms of face muscular activity (e.g., 
squinting, blinking, and yawning) and neck, leg, and arm movements that are repre-
sentative of actions that occur naturally while driving. Noise was artificially added 
to real BCI data from an Essex BCI Mouse experiment.

We analyzed the rankings in two different scenarios: one that simulates the action 
of training the BCI under ideal laboratory conditions and another that trains the 
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236 Wireless Medical Systems and Algorithms

machine using artifact-contaminated data. Both systems were then tested on a noisy 
data set.

We showed that performance decreases with respect to ideal laboratory condi-
tions, but the drop is not too severe, which allows for the use of portable BCIs. 
Furthermore, with respect to whether there is an advantage in purposefully contami-
nating the BCI training set with artifacts that will later be found on the move, our 
results suggest that this is a suboptimal approach. By adding noise to the training 
data set, the classifier is not able to learn the ground truth properly and, if given the 
same number of samples as in “ideal” conditions, performance overall will be lower 
during online use.

One of the main limitations of our work is the fact that artifacts were artificially 
added to the BCI data, rather than collected directly during a BCI experiment. One 
of the reasons for using this method was that it allowed for more control over the data 
set. The collection of artifacts took approximately 2 h, which would have been a very 
long time for a pure BCI experiment. Also, by collecting data separately, we could 
create a variety of data sets, which would not have been possible otherwise (because 
of contamination of neural signals caused by the BCI paradigm and the extremely 
long time that it would have taken). Moreover, if artifacts and BCI data are collected 
together, participants of the experiment are given a dual task, which would also have 
negatively affected BCI performance for the baseline case.

Another limitation is the fact that artifacts were collected with the volunteer in 
a seated position. While these results might be generalized to the cases where the 
user is driving or screening for targets within bursts of images, we have not studied 
the effects of standing (and possibly walking) on BCI performance. The type of 
BCI that we tested in this work is a P300-based BCI. However, our approach can be 
generalized to other types of BCI (e.g., motor imagery or steady-state visual evoked 
potentials) and other EEG purposes like those mentioned in Section 9.1. In most 
types of existing BCIs, the user needs some degree of sustained attention to control 
the system. Hence, for instance, a person will not be able to use a P300-based BCI 
while walking. However, for portable EEG monitoring and EEG-based wearables, 
the effects of leg motion artifacts still need to be studied.

Despite the limitations discussed above, our results show that the effects of several 
types of noise on BCI performance can be greatly diminished with appropriate filter-
ing. Moreover, the algorithms that we used for data preprocessing are fast enough to 
allow for online (i.e., real time) use of the BCI. They are also suitable to be imple-
mented in a portable BCI system, which we will test in the future. Furthermore, despite 
their simplicity, we have shown that, for low levels of contamination, the decrease of 
performance of the BCI was not significant with respect to ideal laboratory conditions.
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